
Augur: a Decentralized, Open-Source Platform for Prediction Markets

Dr. Jack Peterson & Joseph Krug

www.augur.net

Augur is a trustless, decentralized platform for prediction markets. It is an extension of Bitcoin
Core’s source code which preserves as much of Bitcoin’s proven code and security as possible. Each
feature required for prediction markets is constructed from Bitcoin’s input/output-style transactions.

I. INTRODUCTION

A prediction market is a place where individuals can
wager on the outcomes of future events. Those who fore-
cast the outcome correctly win money, and if they fore-
cast incorrectly, they lose money. People value money, so
they are incentivized to forecast such outcomes as accu-
rately as they can. Thus, the price of a prediction market
can serve as an excellent indicator of how likely an event
is to occur [1, 2]. Augur is a decentralized platform for
prediction markets.

Our goal here is to provide a blueprint of a decentral-
ized prediction market using Bitcoin’s input/output-style
transactions. Many theoretical details of this project,
such as its game-theoretic underpinning, are touched on
lightly or not at all. This work builds on (and is intended
to be read as a companion to) the theoretical foundation
established in [3].1

A. Why decentralize?

Historically, the actions required of a prediction market
– accepting wagers, deciding on the outcome of an event,
then paying the wagers back out according to the results
– have been centralized. The simplest approach to aggre-
gating wagers is to have a trustworthy entity maintain a
ledger. The simplest way to determine the outcome of an
event is to get the answer from a wise, impartial judge,
whom all participants in the market trust.

Upon closer inspection, these straightforward answers
fray at the edges: who is this ‘someone’ who is trustwor-
thy enough to maintain a ledger for everyone else? Who
is the judge that every participant trusts? And, even if
such paragons were found and agreed upon, how could
participants be certain they will remain trustworthy once
they are granted more power? “Opportunity makes the
thief”, after all. And, of course, “Power corrupts. Abso-
lute power corrupts absolutely.” [4]

In practice, a larger issue is that these trusted entities
represent single points of failure. Prediction markets are
often disliked by powerful interests. As the experience
of centralized prediction markets – such as InTrade and

1 Additional details and discussions on the theory behind Augur
can be found at www.truthcoin.info.

TradeSports – over the past decade has shown, if govern-
ments or special interest groups want to shut down a web-
site, they will find a way: InTrade, after all, was an Irish
company, shut down as a result of the U.S. Commodity
Futures Trading Commissions actions [5, 6]. Even the
Defense Advanced Research Project Agency and Central
Intelligence Agency were forced to end their foray into
prediction markets as a result of Congressional interfer-
ence [7].

Contrast this with the history of Bitcoin [8]. Bitcoin
is a cryptographic currency and payment platform that
has found an enemy in powerful nation-states and finan-
cial institutions. Nevertheless, Bitcoin has thrived: as
of November 2014, it has a market capitalization of over
five billion U.S. dollars, and it is the anchor of a thriving
ecosystem of startups, trade, and technological innova-
tion. This is possible because Bitcoin is decentralized:
once it was released, it could not be shut down. Even its
pseudonymous creator, Satoshi Nakamoto, cannot stop
the cryptocurrency. This is by design: he (or she or they)
purposely did not make himself Bitcoin’s single point of
failure.

Augur is a decentralized prediction market platform.
The Augur Project’s goal is to revolutionize prediction
markets, and, in doing so, change the way that people
receive and verify ‘truth’.

B. Strategy

Augur is built as an extension to the source code of
Bitcoin Core.2 It includes the features – the betting
and consensus mechanisms – required by prediction mar-
kets. However, it is intentionally the same as Bitcoin in
all other respects, to capitalize on Bitcoin’s security and
scalability. Our intention is to use the ‘pegged sidechain’
mechanism to make Augur fully interoperable with Bit-
coin [9]; if this technology is not available, we will instead
use our own internal currency as the store of value.

C. Tokens

Augur has three types of tokens or units. To keep track
of these units, every transaction input and output value

2 Alternatives, such as smart contract-based implementations, are
discussed in Appendix B.

2

AFTER THE EVENT: REPORTING

User encrypts
report and
broadcasts

Reporting Quorum
reached

Reports
decrypted

Consensus
Reputation
updates &

BTC payouts

Market
opens

Betting
Event(s)
mature

Event
happens!

Ev
en

t
Ev

en
t

Ev
en

t

Ev
en

t

Ev
en

t

Event
included in

market

Event
created

BEFORE THE EVENT: FORECASTING

FIG. 1. Simplified outline of the actions in a prediction market, separated into before and after the event.

fields is accompanied by a units field.
Although there are three types of tokens, users have a

single cryptographic private key.3 Augur addresses are
simply base-58 hashes of their cryptographic public keys,
to which users can send tokens. The different types of
token are distinguished from one another solely through
the ‘units’ field. Therefore, users sign the transaction
data of a Reputation payment in exactly the same way
as they would sign a Bitcoin payment.

The first token is Bitcoin. Sidechains allow us to
transfer Bitcoin by creating a transaction on the Bitcoin
blockchain that locks up the Bitcoin in an address [9].
Then a transaction is made on our blockchain with an
input that has a cryptographic proof that the lock was
made on the Bitcoin blockchain along with the genesis
blockhash of its originating blockchain. A simplified pay-
ment verification (SPV) scheme is used to verify these
locks. A SPV has a list of block headers for proof-of-work
and cryptographic proof that the locking transaction was
created on one of the blocks in the header list.

A key feature of Augur is tradeable Reputation. The
total amount of Reputation is a fixed quantity, deter-
mined upon the launch of Augur. Holding Reputation

3 Augur uses the same public/private key cryptography system as
Bitcoin: private keys are random 256-bit numbers, with a valid
range governed by the secp256k1 ECDSA standard.

entitles its owner to report on the outcomes of events,
after the events occur. Reputation tokens are similar in
other respects to Bitcoins: they are divisible to eight dec-
imal places, they are accounted for by summing over un-
spent transaction outputs, and they can be sent between
users.

A significant way that Reputation differs from Bitcoin
is that Reputation is not intended to be a stable source of
value: Reputation tokens are gained and lost depending
on how reliably their owner votes with the consensus.
Reputation holders are obligated to cast a vote every
time the network ‘checks in’ with reality (by default, this
is every 8 weeks). Another significant difference is that
Reputation is not mined. Instead, Reputation will be
distributed by means of an auction, as proposed in [3].
This solves two problems. First, it will provide fund-
ing to complete the development of the Augur network.
Second, it bootstraps the network with an initial group
of Reputation-holders who are invested in the network’s
success.

Using a Bitcoin sidechain is a straightforward way to
purchase shares. Users will simply transfer Bitcoins to
the Augur network and use them to buy shares of a
prediction. However, this poses a problem. If two peo-
ple want to make a wager on whether event X will oc-
cur within a year from now, they would be exposed to
the price volatility of Bitcoin. A potential solution is
a seigniorage modeled coin. This would create a new

3

cryptocurrency, say ‘USDCoin’, and put them on a few
exchanges to be traded. If the price were above one dol-
lar, the coin algorithm would print more coins; if below
a dollar, the algorithm would discontinue printing. This
allows the price of the coin to stay relatively close to a
dollar.4

Another pertinent question is how to distribute the
coins used to buy shares of predictions. A few options
are available: 1) having a Bitcoin sidechain be the mecha-
nism to buy shares, 2) using a seigniorage model to create
a ‘Cashcoin’ or ‘USDcoin’ that maintains its value with
respect to the US Dollar, and 3) using a hybrid approach
of 1 and 2.

In our view, the best option is to sidechain Augur to
Bitcoin, and have a new seigniorage based coin to al-
low users to both wager with Bitcoin, and another cur-
rency which would be used more for longer term wagers in
which volatility would become an issue. This provides the
benefits of allowing interoperability with Bitcoin holders
as well as a currency suited for holding shares of predic-
tions.

II. PREDICTION MARKET CREATION

The life of a prediction market can be separated into
two principal ‘phases’ (Fig. 1): before and after the event.
To walk through the life cycle of a typical prediction mar-
ket, consider a user, Joe, who wants to wager on the
outcome of the 2016 U.S. Presidential Election.

A. Event Creation

Joe turns on his Augur program, which plugs him di-
rectly into the peer-to-peer network, and clicks on the
‘politics’ group. This brings up a list of all active polit-
ical prediction markets, along with their current prices.
No one has created a market for the 2016 election yet, so
Joe decides to take the initiative. He clicks on ‘Create
Event’. Here, he enters the necessary information about
this event (Fig. 2):

• Description: a short description of the event.

• Type: binary (yes or no), scalar (numeric), or cat-
egorical

• Range of valid answers: yes/no/maybe for boolean,
the minimum and maximum allowed values for
scalar.

• Topic: the category the event falls into. Topics are
created by users, and can be as fine-grained as users
want them to be – examples might be ‘politics’, ‘sci-
ence’, ‘funny cat videos’, ‘serious cat videos’, and
so on.

4 See Nubits for an example.

• Fee: a small fee (on the order of 0.01 Bitcoin) re-
quired to create an event. Half of this fee goes to
users who Report on the results of the event, after
it happens (details in Section IV).

• Maturation: duration of the forecasting phase.
This is the period where users buy and sell shares
of the market. In Augur, time is marked by the
block interval, which is expected to be constant, on
average. Users have the option of entering a ‘block
number’ (which is exact, but not intuitive) or an
‘approximate end time’ (which is not quite exact,
since the block interval is not always exactly the
same length, but is much more intuitive).

• Creator’s address: the address of the event’s cre-
ator.

CreateEvent Transaction

Joe pays a fee of 0.01 Bitcoin to create this event. As
shown in Fig. 2, this is the CreateEvent transaction’s
only input. The CreateEvent transaction also has a single
output, which contains the event’s data.

The output’s data includes the event’s automatically
assigned unique ID, which is a 160-bit hash5 of the other
event output fields. To prevent accidental duplicate event
creation (due to network latency), the same user is not
permitted to create the same event again, with the same
expiration date and description. The value of this output
is the user’s event creation fee. The output can then be
spent by including the event in a CreateMarket transac-
tion (see below).

These inputs and outputs are combined into a Bitcoin-
style transaction:6

{
"type": "CreateEvent",
"vin": [

{
"n": 0,
"value": 0.01000000,
"units": "bitcoin",
"scriptSig": "<Joe ’s signature >

<Joe ’s public key >"
}

],
"vout": [

{

5 SHA256 followed by RIPEMD160, usually referred to simply as
‘hash-160’.

6 Like Bitcoin, Augur’s transactions are broadcast and stored in
serialized form. A deserialized, rawtransaction-like JSON format
is shown here for readability. For brevity, fields such as locktime
and sequence are omitted from our examples when they are not
directly relevant. Also, for Script fields (such as scriptSig and
scriptPubKey) only the asm subfield – i.e., the input to CScript()
– is shown.

4

BTC (from Joe)

∞ shares (to E1)
CreateMarket

Title: “Joe's bizarre bazaar”

Events: [E1, E2, E3, E4]

Loss limit: 10 BTC

Trading fee: 1%

Funding: 27.72588722 BTC

Creator: <Joe's BTC address>

Market ID: M1

Coinba se for s hares o f all
predict ions in the m

a rket

∞ shares (to E2)

∞ shares (to E3)

∞ shares (to E4)

BTC (to M1 pool)

BTC (from E1)

BTC (from E2)

BTC (from E3)

BTC (from E4)

BTC (from Joe)

CreateEvent
Event: “Hillary Clinton wins the 2016 U.S.
Presidential Election.”

Binary: Yes

Topic: Politics

Valid Range: [0, 1]

Fee: 0.01 BTC

Maturation: November 5, 2016

Creator: Joe

Event ID: E2

BTC (to E2)

CreateEventBTC (from Alice) BTC (to E1)

CreateEventBTC (from Bob) BTC (to E3)

CreateEventBTC (from Chris) BTC (to E4)

BTC (from Tom) Payment BTC (to Joe)

FIG. 2. CreateEvent transactions are payments from the user’s address to a newly-generated event address. A CreateMarket
transaction is a coinbase for shares of all the events contained in the market. Any user who has created one or more Events
can incorporate their event(s) into a new market. In this simplified diagram, arrows represent inputs and outputs, and lines
represent spending an unspent output. Note that events and markets have been given simplified IDs (E1, E2, etc.) here to
make the figure easier to read; actual event and market IDs are 160-bit hashes of the event or market data fields, respectively.

"n": 0,
"value" : 0.01000000,
"units": "bitcoin",
"event": {

"id": "<event hash >",
"description": "Hillary Clinton

wins the 2016 U.S. Presidential
Election .",

"branch": "politics",
"is_binary": True,
"valid_range": [0, 1],
"expiration": 1478329200,
"creator": "<Joe ’s address >"

},
"address": "<base -58 event ID >",
"script": "OP_DUP

OP_HASH160
<event hash >
OP_EQUALVERIFY
OP_MARKETCHECK"

}
]

}

The CreateEvent output’s Script is keyed to the
Event’s ID:7

OP_DUP
OP_HASH160

7 Transaction Scripts are conventionally written left-to-right.
However, we use a top-to-bottom format here for the sake of
readability.

<event hash >
OP_EQUALVERIFY
OP_MARKETCHECK

Since the event ID is the hash-160 of the Event’s data,
the CreateMarket transaction’s matching input Script is:

<market hash >
<market data >
<event data >

The raw event data is supplied by the user to be included
in a market, then is pushed onto the stack during the sub-
sequent CreateMarket transaction. OP MARKETCHECK first
calculates the hash-160 of the market’s fields (excluding
the market ID), then verifies that this hash matches the
actual market ID. The CreateEvent transaction’s output
is automatically sent to the event’s address, which is a
base-58 string derived from the event ID in the same
way that Bitcoin addresses are derived from the public
key’s hash-160.

B. Market Creation

Once the event is created, he then clicks on ‘Create
Prediction Market’, where he can include his new Event
in a prediction market. Here he enters other information
about the market:

• Title: label/brief description of the market.

• Events: list event IDs to be included in the market.

5

• Funding: up-front funding provided by the mar-
ket’s creator, which covers the creator’s maximum
possible loss in this Market. This is calculated us-
ing the loss limit, a parameter specified by the user.

• Loss limit: this parameter is set by the market’s
creator. The loss limit (`) sets the maximum
amount of money the market’s creator can lose if
the number of shares goes to zero:

maximum possible loss = `× logNout (1)

Nout refers to the number of outcomes, across all
events, in this market. Greater values of ` translate
to greater market liquidity, but greater potential
loss for the market’s creator.

• Creator: the address of the market’s creator.

CreateMarket Transaction

As shown in Fig. 2, the CreateMarket transaction has
an input and an output for each event included in the
market, plus one additional input and output for the
user’s Bitcoin payment, which provides the market’s ini-
tial liquidity. If NE is the number of events included
in the market, then the CreateMarket transaction has
NE + 1 outputs:

1. The market’s input funding is sent to a special mar-
ket pool address, which is a hash of the market’s
data fields.

2. There is a coinbase output for each event that is
included in the market. These coinbase outputs
create an essentially unlimited number of shares for
each event.8 Including an event in a market spends
the event transaction’s fee output, so that it is no
longer available to be included in other markets.

This is stored in a transaction as follows:

{
"type": "CreateMarket",
"loss_limit": 1.2,
"vin": [

{
"n": 0,
"value": 27.72588722,
"units": "bitcoin",
"tradingFee": 0.005,
"scriptSig": "<Joe ’s signature >

<Joe ’s public key >"
}

],
"vout": [

{

8 Our initial implementation will include 109 shares per event; this
can be increased later if needed.

"n": 0,
"value": 27.72588722,
"units": "bitcoin",
"script": "OP_DUP

OP_HASH160
OP_EVENTLOOKUP
OP_ISSHARES
OP_MARKETCHECK"

},
{

"n": 1,
"value": 10ˆ9,
"units": "shares",
"event": "<event -1 hash >",
"branch": "politics",
"script": "OP_DUP

OP_HASH160
OP_EVENTLOOKUP
OP_ISBITCOIN
OP_MARKETCHECK"

},
{

"n": 2,
"value": 10ˆ9,
"units": "shares",
"event": "<event -2 hash >",
"branch": "politics",
"script": "OP_DUP

OP_HASH160
OP_EVENTLOOKUP
OP_ISBITCOIN
OP_MARKETCHECK"

},
...

],
"id": "<market hash >",
"creator": "<Joe ’s address >"

}

The tradingFee field is the transaction fee to buy or sell
shares in the market. This is specified by the market’s
creator, and is expressed as a multiple of transaction vol-
ume. Here, Joe has set tradingFee at 0.01, so traders in
this market will pay a 1% fee. These fee payments are
divided in half, and split into two Buy and Sell transac-
tion outputs each: one sent to the market’s creator, and
one sent to the market pool.

The locking Scripts for the CreateMarket outputs are
somewhat different than those used by Bitcoin:

OP_DUP
OP_HASH160
OP_EVENTLOOKUP
OP_ISBITCOIN (or OP_ISSHARES)
OP_MARKETCHECK

The purpose of Bitcoin locking Scripts is to verify that
the recipient controls the private key associated with the
public key hash recorded in the Script – that is, that they
are the legitimate owner of the unspent output. By con-
trast, to spend shares (or Bitcoins) from the CreateMar-
ket outputs, the requirement is that the sender supply (1)
the event ID (hash) of which they are Buying or Selling
shares, and (2) the number of shares or Bitcoins which
they wish to trade.

6

OP EVENTLOOKUP ensures that the target event ID
matches one of the events in the market. OP ISBITCOIN
verifies that the units field in the unlocking input Script
is bitcoin; this instruction is in the Script for the shares
outputs. Similarly, OP ISSHARES verifies that the incom-
ing units field is shares, and is in the equivalent Script
for the market pool (Bitcoin) output.

Happy with the market, Joe then publishes it. This
deducts the ` logNE market funding payment from his
account, and broadcasts his CreateMarket transaction to
the Augur network. Miners can then pick up and include
this transaction in a block like any other transaction.
Once it is incorporated into a block, and attached to the
blockchain, Joe’s Market becomes visible to all users of
the Augur network.

III. BEFORE THE EVENT: FORECASTING

Joe’s prediction market has now been created. When
the market is first created, the events contained in it
have not yet occurred. This is the forecasting phase. It
lasts from the time the market is created until the expira-
tion specified by each event. Typically, event expiration
should coincide with the occurrence of the event: Joe’s
event is set to expire at midnight on November 5, 2016
(recorded as a Unix timestamp, 1478329200).

In this phase, the market’s participants are forecasting
or predicting the outcome of the event by making wa-
gers. The way that they make these wagers is by buying
and selling the outcome’s shares. In this section, we first
discuss market making, then delve into the details of the
Buy and Sell transactions.

A. Market Maker

Real-world prediction markets have often had prob-
lems with liquidity [10]. Liquidity is an issue for pre-
diction markets, because, generally, a market’s forecasts
are more accurate the more liquid the market is [11].
To avoid the liquidity issues that arise from simple order
books, we instead use the logarithmic market scoring rule
(LMSR) [12, 13].

The LMSR is the market maker for the entire mar-
ket: all buy and sell orders are routed through the
LMSR, rather than matching buy and sell orders between
traders. The key feature of the LMSR is a cost function
(C, in units of Bitcoin, or BTC), which varies accord-
ing to the number of shares purchased for each possible
outcome:

C (q1, q2, . . . , qN) = ` log

 N∑
j=1

eqj/`

 , (2)

where qj denotes the number of shares for outcome j, N
is the total number of possible outcomes, and ` is the

loss limit, which is determined by the market’s creator.
When the qj ’s are all zero,

N∑
j=1

e0 = N =⇒ C(0, 0, . . . , 0) = ` logN. (3)

This is the maximum possible loss.
The amounts paid by traders who buy and sell shares

in the market are the changes in the cost function caused
by increasing or decreasing the total number of shares.
The cost to the user to buy x shares of outcome k is
the difference between the cost of the new set of shares
outstanding and the old:

C (q1, q2, . . . , qk + x, . . . , qN)− C (q1, q2, . . . , qk, . . . , qN)

If a user wants to sell x shares of outcome k, the cost to
the user is the difference:

C (q1, q2, . . . , qk − x, . . . , qN)− C (q1, q2, . . . , qk, . . . , qN)

Since this difference is negative, the user receives Bitcoin
from this transaction, in return for shares. The current
price for outcome i (p (qi)) is the derivative of Eq. 2:

p (qi) =
eqi/`∑N
j=1 eqj/`

. (4)

A more in-depth discussion of the LMSR, and the equiv-
alence of prices and probabilities, is in Appendix C.

Special Cases

Eq. 2 covers events that can have arbitrary, categorical
outcomes. Our other two event types are special cases of
Eq. 2. Binary events are simply categorical events with
only two possible outcomes. For binary events, the cost
function simplifies to:

Cbinary (q1, q2) = ` log
(

eq1/` + eq2/`
)
, (5)

If we restrict our attention to events with scalar out-
comes, the exponential sum in Eq. 2 becomes an integral:

Cscalar (q(x)) = ` log

(∫ b

a

eq(x)/` dx

)
, (6)

where a and b are the lower and upper bounds on the
scalar’s value. Although the integral in Eq. 6 cannot be
evaluated analytically for unknown q(x), good model ex-
traction and numerical approximation methods exist [14–
17].

B. Buy and Sell Transactions

Now that Joe’s new market is active, anyone can buy
shares of it using Bitcoin. Another user, Paul, looks up

7

BTC (from Paul)

Buy BTC (to E2)

shares (to Paul)

shares (from E2)

∞ shares (to E1)CreateMarket
Title: “Joe's bizarre bazaar”

Events: [E1, E2, E3, E4]

Loss limit: 10 BTC

Trading fee: 1%

Funding: 27.72588722 BTC

Creator: <Joe's BTC address>

Market ID: M1

∞ shares (to E2)

∞ shares (to E3)

∞ shares (to E4)

Market: M1

Event: E2 (“Hillary Clinton wins
the 2016 U.S. Presidential
Election.”)

Outcome: Yes

Amount: 5 BTC

Price: 2 shares/BTC

BTC (from Bob) Payment BTC (to Paul)

BTC (to M1 pool)BTC (from Joe)

BTC (from E1)

BTC (from E2)

BTC (from E3)

BTC (from E4)
BTC (to M1 pool)

BTC (to Joe)

Trading fee

FIG. 3. Example of a Buy transaction. Here, Paul buys shares in the ‘Yes’ outcome of the Event ‘Hillary Clinton wins the
2016 U.S. Presidential Election’. The shares used as an input to the transaction come from an unspent output belonging to
event E2.

the current price, which is 2 shares/Bitcoin, and creates a
Buy transaction, trading 5 Bitcoin for 10 shares of Joe’s
event.

A Buy transaction is initiated by a Bitcoin owner. It
has two inputs and two outputs, as shown in Fig. 3. A
Buy transaction sends Bitcoin from the user’s address to
a specified event address, and shares of the event to the
user’s address. It contains the following information:

• Event: the event for which the user is buying
shares.

• Outcome: the outcome of the event that the user
is buying shares of.

• Amount: the number of shares to buy.

• Price: the price per share, calculated using the
LMSR.

This is organized into a transaction as follows:

{
"type": "Buy",
"vin": [

{
"n": 0,
"value": 5,
"units": "bitcoin",
"scriptSig": "<Paul ’s signature >

<Paul ’s public key >"
},
{

"n": 1,
"value": 10,
"units": "shares",
"outcome": true,
"scriptSig": "<event ID >"

}
],
"vout": [

{
"n": 0,
"value": 5,
"units": "bitcoin",
"script": "OP_DUP

OP_HASH160
<event ID>
OP_EQUALVERIFY
OP_MARKETCHECK"

},
{

"n" : 1,
"value" : 10,
"units": "shares",
"outcome": true,
"script" : "OP_DUP

OP_HASH160
<Paul ’s hash -160>
OP_EQUALVERIFY
OP_CHECKSIG"

}
]

}

Similarly, a Sell transaction sends unspent shares from
the user back to the event, and Bitcoin from the event to
the user:

{
"type": "Sell",
"vin": [

{
"n": 0,
"value": 10,
"units": "shares",
"outcome": true,
"scriptSig": "<Paul ’s signature >

<Paul ’s public key >"
},
{

"n": 1,
"value": 5,

8

"units": "bitcoin",
"scriptSig": "<market ID>

<market data >
<event data >"

}
],
"vout": [

{
"n": 0,
"value": 5,
"units": "shares",
"outcome": true,
"script": "OP_DUP

OP_HASH160
<event ID>
OP_EQUALVERIFY
OP_MARKETCHECK"

},
{

"n" : 1,
"value" : 10,
"units": "bitcoin",
"script" : "OP_DUP

OP_HASH160
<Paul ’s hash -160>
OP_EQUALVERIFY
OP_CHECKSIG"

}
]

}

Buy and Sell transactions are atomic, in the sense that
either the entire transaction succeeds, or the entire trans-
action fails. That is, it is impossible for Paul to send
Bitcoin to the event address, and not receive shares in
return. In traditional database terms, either the entire
transaction is committed – broadcast to the network, in-
cluded in a block, added to the blockchain – or it is rolled
back. There is no way for only some of the information
in the transaction to be written to the blockchain.

IV. AFTER THE EVENT: REPORTING

The reporting phase occurs after the event takes
place.9 In this phase, the event’s outcome is easily de-
terminable – to continue with our example of the U.S.
Presidential Election, by Googling for the results of the
Presidential election, after the election has finished.

A. Reporting

A Report transaction consists of:

• Outcomes: encrypted report that contains the
sender’s observations.

9 Technically, reporting is allowed any time after the Market is
created. However, reporting on an outcome prior to the event’s
occurrence would be a spectacularly unnecessary gamble!

• Reputation: the sender’s Reputation.

To prevent collusion, the contents of Augur reports
must be kept secret. To achieve this, after the user inputs
his/her observations, the Report is encrypted by his/her
local Augur software. After it is encrypted, the Report
transaction is broadcast to the network.

1. Report Transaction

Report data is stored as follows:

{
"type": "Report",
"vin": [

{
"n": 0,
"value": 40,
"units": "reputation",
"scriptSig": "<Jane ’s signature >

<Jane ’s public key >"
},
{

"n": 1,
"value": 2,
"units": "reputation",
"scriptSig": "<Jane ’s signature >

<Jane ’s public key >"
}

],
"vout": [

{
"n": 0,
"value": 42,
"units": "reputation",
"report": {

"id": "<report hash >",
"outcomes": "<encrypted >",
"quorum": {

"matured": true,
"reported": 1,
"required": 2,
"met": false

}
},
"script": "OP_DUP

OP_HASH160
<Jane ’s hash -160>
OP_EQUALVERIFY
OP_CHECKDATA
OP_CONSENSUS
OP_PCACHECK
OP_EQUALVERIFY"

}
]

}

The Report ID is the hash-160 of the Report’s data fields.
Since Reputation is tradeable, it can be sent between
users; here, the user (Jane) has two Reputation inputs
into her Report transaction. One of them comes from
her last Report’s Redemption transaction (see below).
The other, smaller, Reputation input is Reputation that
was sent to her by a friend.

9

Event Your Report
Hillary Clinton will win the 2016 U.S. Presidential election. NO

The unemployment rate will be lower at the end of 2017 than at
the end of 2016.

YES

If Hillary Clinton is elected President in 2016, the unemployment
rate will be lower at the end of 2017 than at the end of 2016.

YES

Hillary Clinton sucks! INVALID

Reputation: 42

Submit Report

FIG. 4. Sample Report. Reputation owners report on the actual outcome of an event, after the event has occurred. Each
‘Your Report’ entry is initially set to NO REPORT ENTERED; if submitted that way, the user will not receive credit for reporting
on that event. INVALID reports are permitted – in fact, encouraged! – for poorly-worded and/or indeterminate questions, since
truth-by-consensus works well only for outcomes which are easily and objectively determinable. Since this user’s Reputation
is 42, his/her ballot has a weight of 42. Another user who has a Reputation of 105 would also only cast a single ballot, but
his/her opinions would be given 2.5 times as much weight as the first user’s.

There are a few unusual things about the Report trans-
action. The first is the structured quorum field:

"quorum": {
"matured": true,
"reported": 0,
"required": 2,
"met": false

}

There are two requirements for quorum to be met:

1. The events being reported on must have passed
their maturity time. Typically, if people are re-
porting on an event, this will be the case – events’
maturity times should be set at or after the (ex-
pected) time of occurrence. In this example, the
Report transaction has been made after the matu-
rity time, as expected.

2. The minimum number of required reports must be
met. In this simple example, there are only two re-
ports required to meet quorum, zero of which have
been provided so far.10

Once quorum is met, the market closes, and no more
Bitcoin transactions are accepted. Report broadcasting
continues for a pre-specified period of time. Upon com-
pletion of this phase, each Report is decrypted, and the
Reports are gathered into a report matrix. This matrix

10 Not counting the current report, which has just been broadcast
to the network, and is not yet included in a block.

has users as rows and events as columns; the values of
the matrix are the users’ observations.

The other unusual feature of the Report transaction is
its output Script, which includes several new commands:

OP_DUP
OP_HASH160
<Jane ’s hash -160>
OP_EQUALVERIFY
OP_DATACHECK
OP_CONSENSUS
OP_PCACHECK
OP_EQUALVERIFY

The first, OP DATACHECK, calculates the hash-160 of the
Report’s fields (excluding the report ID), then verifies
that this hash matches the actual Report ID. This is
to ensure that the transaction’s contents were not tam-
pered with during the delay from the time the Report
was broadcast until the market closes.

The second new command, OP CONSENSUS, initiates the
consensus algorithm, which is described in detail in the
following section. OP CONSENSUS requires the report ma-
trix as an input. The report matrix does not yet exist
when the reports are first broadcast; instead, it is pieced
together when the Reports are decrypted. Once the re-
port matrix is assembled, it is written to the associated
input’s scriptSig.
OP PCACHECK verifies that the outcome of the con-

sensus algorithm is correct.11 The final opcode,

11 The consensus algorithm is a modified form of a common statis-
tical technique called PCA (Principal Component Analysis) [18],

10

Redemption
Report ID: R1

Events: [E2, ...]

Outcomes: [yes, ...]

Updated Reputation:
shares (from Joe)

BTC (from E2)
BTC (to Paul)

Report
Report ID: R1

Outcomes: <encrypted>

Matured: yes

Quorum: no (1/2)

10 Reputation (to R1 pool)10 Reputation (from Helga)

Report
Report ID: R1

Outcomes: <encrypted>

Matured: yes

Quorum: yes (2/2)

42 Reputation (to R1 pool)42 Reputation (from Jane)

10 Reputation (from R1 pool)

42 Reputation (from R1 pool)

Quorum met!

BTC (from Paul) Buy BTC (to E2)

shares (to Paul)shares (from E2)

BTC (from Joe) Buy BTC (to E2)

shares (to Joe)shares (from E2)

BTC (from E2)

shares (from Paul)

User Reputation

Helga 14

Jane 45

Beatrice 4

BTC (from E2)

19 Reputation (to Helga)

37 Reputation (to Jane)

4 Reputation (to Beatrice)

Event ID: E2

Outcome: Yes

Event ID: E2

Outcome: No

FIG. 5. Report and Redemption transactions. In this simple example, there are only 2 users reporting, Helga and Jane. (In
reality, their names would not be known.) Helga broadcasts her report first, after the event has reached its maturity date. Since
she is the first user to broadcast her report, only 1/2 users have reported, and quorum has not been reached, so the markets
associated with the events listed on the ballot remain open. Later, Jane fills out her ballot and broadcasts it. At this point
2/2 users have reported, and quorum is reached. This automatically triggers the Redemption transaction, which makes use of
special commands in the Report transactions’ output Scripts to reach and verify consensus. Notice there are actually 3 users
total; the third user, Beatrice, neglected to submit a Report, and therefore lost Reputation.

OP EQUALVERIFY, compares the product with the original
(centered) report matrix and ensures that they match.

2. Redemption Transaction

The Report output’s matching input Script is as fol-
lows:

<Jane ’s public key >
<report matrix >
<centered report matrix >

The centered report matrix is the report matrix with the
per-column weighted mean subtracted from each column.

This Script is found in the Redemption transaction
(Fig. 5), a special transaction which is initiated when
quorum is reached:

{
"type": "Redemption",
"vin": [

{
"n": 0,
"value": 10,
"units": "reputation",
"scriptSig": "<Helga ’s public key >

<report matrix >
<centered report matrix >"

},
{

hence the name OP PCACHECK.

"n": 1,
"value": 42,
"units": "reputation",
"scriptSig": "<Jane ’s public key >

<report matrix >
<centered report matrix >"

},
<all outstanding shares >,
<all outstanding wagers >

],
"vout": [

<all reputation >,
<all wagers >

]
}

The Redemption transaction is quite large: it has two
inputs for every outstanding wager – one for Bitcoin, one
for shares.12 Reputation balances are updated using a
modified version of the Sztorc consensus algorithm [3].13

This algorithm’s purpose is to reward users whose re-
ports are consistent with the consensus, and punish those
whose reports are not.

Per-share values are fixed according to the consensus-
determined outcomes. The fixed share-price values are
then used to determine the payout sent to all users hold-
ing shares in these events. Payout values are assembled
in a matrix containing the events in columns, and the

12 Various hard-coded size limits on transaction and block size are
lifted specifically for the Redemption transaction.

13 Details of the consensus algorithm are shown in Appendix A.

11

share owners’ addresses in rows. When this payout ma-
trix is complete, the market broadcasts it to the Augur
network. Once it is incorporated into a block and added
to the blockchain, the payouts appear in the recipients’
accounts.

ACKNOWLEDGMENTS

The authors thank Vitalik Buterin, Paul Sztorc, Zack
Hess, Alan Lu, Joe Costello, Jeremy Gardner, Casey De-
trio, Joe Dolinak and Kinnard Hockenhull for their in-
sights and feedback. Financial support for this project
was provided by Joe Costello.

[1] C. Manski. Interpreting the predictions of prediction
markets. NBER Working Paper No. 10359, 2004.

[2] J. Wolfers and E. Zitzewitz. Interpreting prediction
market prices as probabilities. NBER Working Paper
No. 10359, 2005.

[3] P. Sztorc. Truthcoin: trustless, decentral-
ized, censorship-proof, incentive-compatible, scal-
able cryptocurrency prediction marketplace.
https://github.com/psztorc/Truthcoin, 2014.

[4] M. Felson and R.V. Clarke. Opportunity makes the thief:
practical theory for crime prevention. Police Research
Series, Paper 98, 1998.

[5] U.S. Commodity Futures Trading Commission. CFTC
charges Ireland-based “prediction market” proprietors
Intrade and TEN with violating the CFTC’s off-exchange
options trading ban and filing false forms with the CFTC.
Nov. 26, 2012.

[6] M. Philips. What’s behind the mysterious intrade shut-
down? Bloomberg Businessweek, Mar. 11, 2013.

[7] P.F. Yeh. Using prediction markets to enhance us intel-
ligence capabilities: a “standard & poors 500 index” for
intelligence. 50, 2006.

[8] S. Nakamoto. Bitcoin: a peer-to-peer electronic cash sys-
tem. https://bitcoin.org/bitcoin.pdf, 2008.

[9] A. Back, M. Corallo, L. Dashjr, M. Friedenbach,
G. Maxwell, A. Miller, A. Poelstra, J. Timon, and
P. Wuille. Enabling blockchain innovations with pegged
sidechains. http://www.blockstream.com/sidechains.pdf,
2014.

[10] C. Slamka, B. Skiera, and M. Spann. Prediction mar-
ket performance and market liquidity: a comparison of
automated market makers. IEEE Transactions on Engi-
neering Management, 60:169–185, 2013.

[11] D.M. Pennock, S. Lawrence, C.L. Giles, and F.A. Nielsen.
The real power of artificial markets. Science, 291:987–
988, 2001.

[12] R. Hanson. Logarithmic market scoring rules for mod-
ular combinatorial information aggregation. Tech. Rep.,
George Mason University, Economics, pages 1–12, 2002.

[13] R. Hanson. Combinatorial information market design.
Information Systems Frontiers, 5:107–119, 2003.

[14] J. Shore and R. Johnson. Axiomatic derivation of the
principle of maximum entropy and the principle of min-
imum cross-entropy. IEEE Transactions on Information
Theory, 26(1):26–37, 1980.

[15] J. Skilling. Data analysis: the maximum entropy method.
Nature, 309:748–749, 1984.

[16] S. Presse, J. Lee, and K.A. Dill. Extracting con-
formational memory from single-molecule kinetic data.
J. Phys. Chem. B, 117:495–502, 2013.

[17] S. Presse, J. Peterson, J. Lee, P. Elms, J.L. MacCallum,
S. Marqusee, C. Bustamante, and K. Dill. Single molecule

conformational memory extraction: P5ab RNA hairpin.
J. Phys. Chem. B, 118:6597–6603, 2014.

[18] J. Shlens. A tutorial on principal component analysis.
http://arxiv.org/abs/1404.1100, 2009.

[19] G.R. Price. Extension of covariance selection mathemat-
ics. Annals of Human Genetics, 35:485–490, 1972.

[20] V. Buterin. Ethereum white paper: a next generation
smart contract & decentralized application platform.
https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf,
2013.

[21] G. Wood. Ethereum: a secure decentralised gen-
eralised transaction ledger, proof of concept VI.
http://gavwood.com/paper.pdf, 2014.

[22] E.T. Jaynes. Information theory and statistical mechan-
ics. Physical Review, 106(4):620–630, 1957.

[23] E.T. Jaynes. Information theory and statistical mechan-
ics II. Physical Review, 108(2):171–190, 1957.

[24] Principles of maximum entropy and maximum caliber in
statistical physics. Reviews of Modern Physics, 85:1115–
1141.

[25] J. Shore and R. Johnson. Properties of cross-entropy
minimization. IEEE Transactions on Information The-
ory, 27:472, 1981.

12

Appendix A: Consensus Algorithm

The algorithm outlined here is a modified version of the
Sztorc consensus algorithm, originally presented in [3]. In
the original algorithm, the first eigenvector of the covari-
ance matrix (the principal component) was solely used,
regardless of the amount of variance it explained. Our
modification is that a fixed fraction of explained variance
is specified. This should make the rewards/punishments
for reporting with/against the consensus more consistent
across different Branches.

Suppose there are E total events being reported on by
N users. We first take the ballot B of votes and con-
struct its weighted covariance matrix, where the weights
are Reputations. The centered ballot (the ballot with
each event’s weighted mean value subtracted out) X is:

X = B− 1rTB, (A1)

where T denotes the transpose operation and the dif-
ference is taken per-column. The ordinary (unweighted)
covariance matrix is given by multiplying the centered
data matrix and its transpose; similarly, the weighted
covariance matrix is [19]:

Σ =
XTRX

1−
∑N
i r

2
i

, (A2)

where R has the elements of r on its diagonal and zeros
elsewhere, Rij = δijri.

Each row (and column) of Σ corresponds to the vari-
ability across users, within a single event. Since there
are E events, Σ is an E × E matrix.

Next, we diagonalize Σ,

Σ = SΛST , (A3)

revealing Λ, an E×E matrix with Σ’s eigenvalues on its
diagonal, and zeros elsewhere:

Λ =

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λE

 . (A4)

The eigenvalues are in descending order, λi > λi+1.
The eigenvectors of Σ are the columns of the simi-

larity matrix, S. The column of S associated with the
largest eigenvalue (λ1) is called the principal component,
s1. This component s1 is a unit vector oriented in the
direction of as much of the report matrix’s variability as
can be captured in a single dimension. This direction of
maximum variability might be thought of as a hypothet-
ical user who maximally contributed as much as possible
to the variability in this particular set of reports.

The projection p1 of the centered data matrix (X)
onto the principal component s1 tells us how much each
user’s reports contributed to this direction of maximum

1 2 3 4 5 6 7 8
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−3

non−conformity

c
h
a
n
g
e
 i
n
 r

e
p
u
ta

ti
o
n

FIG. 6. Non-conformity scores plotted against users’ change
in Reputation after a single ballot resolution, in a small ex-
ample of 50 users reporting on 25 events. The sizes of the
circles indicate the number of users submitting identical re-
ports. Blue indicates honest users; red indicates dishonest
users.

variability. The same is true for p2: now the projection
is onto the direction of next-largest-variability.

Our strategy to achieve consensus is as follows. The
cumulative fraction of variance (αk) explained by the kth

component is given by [18]:

αk =

∑k
i=1 λi∑E
j=1 λj

. (A5)

Setting a fixed variance threshold (α) allows us to extract
the number of components (n) needed to explain at least
α×100% of the report matrix’s total variance. The coor-
dination vector c is calculated by summing together the
(centered) data projections onto the first n components,
weighted by their eigenvalues:

c = X

n∑
j=1

λjsj . (A6)

Element ci of the coordination vector is an estimate of
the non-conformity of user i. A high score indicates that
this user contributed a great deal to the system’s overall
variability – that is, the user often disagreed with the
consensus – and therefore was likely not honest. The
user is therefore punished (Fig. 6).

The remainder of our consensus calculation, and Repu-
tation redistribution calculation, is identical to the spec-
ification of [3].

Appendix B: Smart Contracts

A decentralized prediction market can be constructed
in a relatively straightforward way using smart contracts,
such as Ethereum [20, 21]. Due to the recent release of

13

Serpent contracts on Counterparty, we are also testing
an alternative implementation of Augur using Serpent.
Counterparty’s announcement frees us to use Bitcoin as
the transactional currency on our platform, instead of
having to use Ethereum’s ether – this will also be reme-
died on Ethereum itself when sidechains are released.

We think smart contracts may provide an alternative
method for implementing Augur. However, there are sev-
eral potential barriers related to security and scalability.
We are currently testing our contract implementation
and will update the whitepaper with our results.

Appendix C: LMSR Derivation

Here we present a simple derivation of the logarith-
mic market scoring rule (LMSR), using the principle of
Maximum Entropy [22–24].

Let qi denote the number of shares outstanding of out-
come i, and P (qi) denote the probability that there are
qi outstanding shares of outcome i. The entropy of the
market is given by the standard form [14, 25]:

S ({qi}) = −
∑
i

P (qi) logP (qi), (C1)

where the sum is over all possible outcomes in this mar-
ket. Suppose there are two constraints on the entropy.
The first is the mean number of shares outstanding,
across all outcomes in the market,

〈q〉 =
∑
i

qiP (qi) , (C2)

and the second is normalization:∑
i

P (qi) = 1. (C3)

The market’s Lagrangian is Λ ({qi}) = S − 〈q〉 − 1.
The constrained maximum entropy is found where the
derivative of Λ vanishes,

dΛ =
∑
i

dP (qi)
[

logP (qi) + 1 + α+ βqi

]
= 0, (C4)

where the multipliers α and β enforce normalization and
constraint C2, respectively. Since Eq. C4 is required to

hold for all possible i, it simplifies to:

logP (qi) + 1 + α+ βqi = 0. (C5)

Using Eq. C3 to eliminate the normalization parameter
e−1−α, reveals the Boltzmann distribution:

P (qi) =
e−βqi∑
j e−βqj

= Z−1 e−βqi , (C6)

where Z is the canonical partition function:

Z =
∑
i

e−βqi . (C7)

As in statistical physics, Eq. C6 describes a family of
probability distributions, characterized by the value of
the Lagrange multiplier β. The value of β, which is set by
data, is the connection between the information-theoretic
derivation and reality. In thermodynamics, β is the in-
verse of the system’s temperature; for a market, it is set
by the market’s liquidity. Examining Eq. C6 and Eq. 4, it
is clear that β is set by the LMSR’s loss limit parameter
(`),

β = −1

`
, (C8)

we see that Eq. C6 is identical to the LMSR price function
(Eq. 4):

p (qi) = P (qi) = Z−1 eqi/`. (C9)

Eq. C9 is the result expected for a prediction market: the
price offered for shares of outcome i is exactly equal to
the probability that outcome i will occur.

In this framing, the number of shares qi is analogous
to a thermodynamic energy (or internal energy). The
LMSR’s cost function is just the logarithm of the sum of
statistical weights, which we have identified as the sys-
tem’s partition function (Eq. C7).

C ({qi}) = −` logZ = 〈q〉+ `S. (C10)

This is identical to the Helmholtz free energy, a thermo-
dynamic function which describes the amount of work re-
quired to generate the system’s observed statistical con-
figuration. This configuration is the distribution of en-
ergy levels for a thermodynamic system; for a market
governed by the LMSR, it is the share distribution.

	Augur: a Decentralized, Open-Source Platform for Prediction Markets
	Abstract
	Introduction
	Why decentralize?
	Strategy
	Tokens

	Prediction Market Creation
	Event Creation
	CreateEvent Transaction

	Market Creation
	CreateMarket Transaction

	Before the Event: Forecasting
	Market Maker
	Special Cases

	Buy and Sell Transactions

	After the Event: Reporting
	Reporting
	Report Transaction
	Redemption Transaction

	Acknowledgments
	References
	Consensus Algorithm
	Smart Contracts
	LMSR Derivation

