
Synereo: The Decentralized and Distributed Social
Network

Dor Konforty, Yuval Adam, Daniel Estrada, Lucius Gregory Meredith

{dor,yuval,daniel,greg}@synereo.com

March 15, 2015

Abstract

We present Synereo, a next-gen decentralized and distributed social network
designed for an attention economy. Our presentation is given in two chapters.

Chapter 1 presents our design philosophy. Our goal is to make our users
more effective agents by presenting social content that is relevant and actionable
based on the user’s own estimation of value. We discuss the relationship between
attention, value, and social agency in order to motivate the central mechanisms
for content flow on the network.

Chapter 2 defines a network model showing the mechanics of the network in-
teractions, as well as the compensation model enabling users to promote content
on the network and receive compensation for attention given to the network.
We discuss the high-level technical implementation of these concepts based on
the π-calculus the most well known of a family of computational formalisms
known as the mobile process calculi.

0.1 Prologue: This is not a manifesto

The Internet is overflowing with social network manifestos. Ello has a manifesto.
Tsu has a manifesto. SocialSwarm has a manifesto. Even Disaspora had a
manifesto. Each one of them is written in earnest with clear intent (see figure
1).

Figure 1: Ello manifesto

The proliferation of these manifestos and the social networks they adver-
tise represents an important market shift, one that needs to be understood in
context. The shift from mainstream media to social media was all about “user
generated content”. In other words, people took control of the content by mak-
ing it for and distributing it to each other. In some real sense it was a remarkable
expansion of the shift from glamrock to punk and DIY; and like that movement,
it was the sense of people having a say in what impressions they received that
has been the underpinning of the success of Facebook and Twitter and YouTube
and the other social media giants.

In the wake of that shift, though, we’ve seen that even when the people are
producing the content, if the service is in somebody else’s hands then things
still go wonky: the service providers run psychology experiments via the social
feeds [1]; they sell people’s personally identifiable and other critical info [2]; and
they give data to spooks [3]. Most importantly, they do this without any real
consent of their users. With this new wave of services people are expressing a
desire to take more control of the service, itself. When the service is distributed,
as is the case with Splicious and Diaspora, it is truly cooperative. And, just
as with the music industry, where the technology has reached the point that
just about anybody can have a professional studio in their home, the same is
true with media services. People are recognizing that we don’t need big data
centers with massive environmental impact, we need engagement at the level of
the service, itself.

If this really is the underlying requirement the market is articulating, then
there is something missing from a social network that primarily serves up a
manifesto with their service. While each of the networks mentioned above con-
stitutes an important step in the right direction, they lack any clear indication

1

of exactly how to achieve the aims and goals they lay out. The manifestos
represent an attitude, not a plan. They ask their audience to trust them, and
that’s not what the intended audience actually wants to hear. People want to
hear how they can become engaged, how they can develop the service to support
their own aims and goals.

That’s why this document is not a manifesto. It’s a how-to manual. True
to the spirit of open source, this paper describes the Synereo attention model
in enough detail that anyone with sufficient motivation can check it out or even
build it for themselves. Likewise, it shows how to realize that attention model
and the corresponding attention economy on a distributed network. It identifies
best of breed tools, from mathematical frameworks to software stacks that make
it possible to get the job done in a timely fashion with a level of quality and
reliability that people have come to expect from their social media services.
It also shows how these elements come together to provide new, unexpected
opportunities not mentioned or even envisioned by the “manifesto networks”.

We believe that this is what the market wants: not just the hackers and
cryptonerds, but people who are concerned enough about the current situation
that they are backing just about anything that looks like a viable alternative to
the centralized incumbents. We believe that the major success of the Internet
and then the world wide web was its distributed DIY approach to building
and maintaining a communications infrastructure. The success of each of these
developments was that ordinary people could add their computers and stand up
their own websites and show the world what they had to offer. Synereo returns
to that vision, and then refreshes, renews, and expands it. This paper describes
how.

2

Chapter 1

Synereo: Design

1.1 Introduction

Social networking services are a major part of the Internet, and an important
form of human interaction. The vast majority of the popular services run on
centralized architecture, where the third party service provider grants privileges
to the end users to use its service. In some cases the service is paid for, but in
most cases the service is provided in exchange for viewing advertisements on the
platform. Such services have various shortcomings which we attempt to address
with Synereo.

Synereo is a decentralized and distributed social network service with a novel
model defining network interactions. Managing the flow of information is critical
for organizing an effective social network. Synereo implements an attention
economy to address these concerns. Attention is the brain’s natural method of
information management, and it is a scarce and valuable commodity. Synereo
treats user’s attention, social feedback and activity on the network as having
an inherent power to influence their reputation and the flow of content across
their communities. This design is meant to give users a sense of social agency
by recognizing and rewarding the value they create by engaging the network.
We are building Synereo with a commitment to putting social networks back in
their users’ control.

The network model is based on physical principles of electrical current flow.
We implement insight from the function of the neural networks of the brain
to create a unique ecosystem where information is directed to where it will be
appreciated and utilized well. This creates a stream of information that is most
relevant to users and their communities, and that will promote the generation,
curation, and engagement with content on the network.

Synereo uses AMPs as the currency for expanding the organic reach of con-
tent throughout the network. AMPs can be purchased and exchanged between
users, invested in specific content to facilitate its flow through the network, or
used to compensate users for their contribution to it. AMPs are also accrued
for providing necessary infrastructure for the network to operate, such as stor-
ing content and providing bandwidth for sharing it. These mechanisms will be
explained in further detail in the next sections.

From a technical point of view, Synereo is a distributed protocol and appli-

3

cation. End users can run the service on their own computation devices, gaining
full control over their data. Thus, Synereo is directly aligned with the shifting
trends of the web from a centralized model, to a more open, user-centric, dis-
tributed architecture. As part of an effort to make the Synereo technology easily
accessible to large audiences, we provide an architecture for deploying central-
ized Synereo web-based gateway services, such that technically-able users - or
partner services - can host Synereo nodes as a service to their peers.

1.2 Background

1.2.1 The opportunity

Over the past decade, social media platforms have risen to become a major force
on the Internet. As two-thirds of all Internet users are using these platforms,
with 1 out of every 5 pageviews occurring on Facebook alone, and with many
directly equating social media with Internet, the importance of these venues
cannot be understated. [4] [5] [6] [7]

The amount of money social networks generate is staggering. Leading the
pack is Facebook, earning 3.85 billion USD in the last quarter of 2014, followed
by Twitter with 479m USD. [8] [9] When thinking about these numbers, its
important to remember that the value created on these networks - what allows
Facebook et al to generate these profits - comes directly and unequivocally from
their users. [10] In fact, users and their worth is the primary parameter these
connetworks are measured by. Facebook recently acquired WhatsApp for 19b
USD, paying 42 dollars per user. [11] Similarly, the value of Facebook and
Twitter users is often calculated through their market cap - currently at 141
and and 81.5 dollars, respectively. [12]

Faced with these numbers, many people are asking themselves, Does it make
sense that the value we create simply by sharing our lives online is retained by
the people who happened to be the first to provide the infrastructure allowing
us to do so? That these social platforms stated aim is to increase the revenue
they can extricate from us? From our basic need to communicate and share
ourselves with others?

Indeed, this is how current social networking service providers see their users:
as unpaid laborers. As free content creators whose behaviors can be recorded
and measured, the data generated auctioned off to corporations. And for many,
this may still be fine. The services given are now seen as basic necessities in
our digital age, and so perhaps the balance struck between user and service
provider is a fair one. However, there are other issues tipping the scale against
the incumbents: theres been a breach of trust. The information going into user
feeds is being manipulated, and the information going out - including details
of our activity outside of Facebook - is being handed over to governmental
authorities; privacy settings be damned. [13] [14] [15]

The entire foundation of established online identity is based in these ax-
ioms, of being surveilled, labeled and sold to the highest bidder. And with
social network profiles serving more and more as the default identities on the
web, everywhere – most services do not bother creating their own identity and
authentication components – perhaps its time to stop and think if this how we
want our digital identity to exist and evolve.

4

The more we wait, the more irreversible this becomes.
Its clear that many users are aware of these issues and are looking for other

ways to network online. A simple look at different offerings in the space, aiming
to subvert some of the aforementioned premises, have been met with hope and
with praise before ever delivering anything substantial. Diaspora, in many ways
ushering the concept of a decentralized service, was quickly backed financially
by hundreds of people. [16] Ello, a recent attempt to create an environment
where users arent monetized through ads, exploded in popularity within a few
months of its launch, registering 1 million users and keeping 3 million more on
its waiting list as it went on to scale its centralized technology. [17]

Synereo offers a new approach, one that is sustainable both technologically
and financially. An approach that is based on the recognition that we are little
more than money-making machines on current social networks, and turns this
idea on its head. The networks we build amongst ourselves, the information we
curate and spread, the social structures emerging, and the information flowing
through them are all of great value that is completely unavailable to us or
is cynically used to monetize us. Therefore, Synereo provides a venue where
participating in the social network is participating in an economy – the attention
economy, where participants benefit directly from the value they create. Further,
in Synereo, our digital identity reverts to our control. We are free to construct it
as we see fit and establish and utilize our reputation; its about our connections
with others; about the communities we form; about the trust placed in us by
our peers. Synereo, therefore, was not created only for reclaiming our financial
value. Its about reclaiming our social capital.

Social agency and the attention economy

Synereo is designed for the economy of attention. But what is the value of atten-
tion? How should our networks recognize and appreciate our attention? What
are we owed for the investment of our attention? We begin by noting a variety
of new services that have begun compensating users for their online activity.
For instance, Tsu1 compensates users with a portion of earned advertising rev-
enue on their content. Gems2 allows users to compensate each other directly
for messages and advertising using their own cryptocurrency. Gems developers
have explicitly described the compensation model of their system in terms of
the attention economy 3 Since users are paid for their time and attention, these
networks are described by their developers as contributing to the economy of
attention.

Compensating users for their attention is certainly better than expecting
their labor for free. We welcome the move to recognize user contributions to
the value of these networks, and to reward the love and effort that goes into
all the content they produce. However, the issue is more complicated than
simply paying people for their attention. Specifically, these networks fail to
appreciate the role of agency in managing the flow of attention. The relationship
between agency and attention has profound psychological, sociopolitical, and

1http://www.tsu.co
2http://getgems.org/
3See Bitcoin News Weekly episode 22, retrived Jan 2015 from

http://shoutengine.com/BitcoinNewsWeekly/dollars-to-bitcoins-banks-hate-bitcoin-the-
gold-5231.

5

ethical implications. It requires explicit critical reflection as we develop the
next generation of social networks.

In this section, we justify the compensation model used in Synereo (social
compensation - Reo, and monetary compensation - AMPs) in terms of how
they assist the attention economy by making users more effective agents in the
network.

Attention is selection for action

Any agent must deal with the challenge of information overload [18], [19]: there
are typically more data available to the system than it can meaningfully process.
Thus, agents must select among the available data for relevance in order to
effectively use its processing resources. Additionally, there are typically many
actions appropriate to a given data context. The agent must select among these
possible outputs in light of its selected inputs. Wu [20] [21] describes attention
as the solution to this “many-many problem”. Attention meets “the challenge of
sifting through many ’inputs’ and many potential ’outputs’ to generate coherent
behavior.”4

Wu claims that “attention is selection for action”5. An agent’s attention to
some stimulus demonstrates the agent’s assessment that this stimulus is relevant
to some activity to which the agent is engaged. For instance, if I’m playing
frisbee in the park, I will usually respond to the airborne disc with behaviors
appropriate for catching it. My attention is spent tracking the disc and ignoring
distractions. This investment of attention serves to orient my body so that I
can be in the right position to catch the frisbee as it flies through the air.
If, in this process, someone yells “watch out!” behind me, I might divert my
attention towards the source of the voice and lose track of the frisbee. My
shifted attention represents a spontaneous revaluation of value: that this new
stimulus might be more deserving of my cognitive resources than the frisbee.
The warning comes to occupy my attention to the exclusion of the frisbee, and
by doing so it reorients my processing resources to focus on a new input source
and prepare me for a new set of actions.

In general, a user’s attention is pulled to various attractors in the percep-
tual and behavioral space, depending on their spontaneous assessment of the
relevance of these attractors to their various ongoing commitments. Since their
projects can be quite diverse (ranging from catching the frisbee to staying alive),
their attention system must weigh a very complex and dynamic set of criteria
for resolving the many-many problem.

Put simply, attention is the system by which agents determine both their
experience of the world and how they will engage it. The flow of an agent’s
attention indicates their continuous revaluation of value, their estimation of
how their processing capacity is best spent. As Herbert Simon described [22],
an economy of attention recognizes the value and scarcity of attention for the
agent and the need to allocate attention efficiently. If attention is selection for
action, then “allocating attention efficiently” means allocating attention in ways
that help users act in the world, so that they might better realize their ends as
agents.

4Wu (2011) p 3
5ibid.

6

In other words, the attention economy is about agency. Designing for an
attention economy is essentially about making people more effective agents
through the careful management of their attention. That means shaping both
inputs and outputs in ways that reflect the user’s own estimation of value. An
efficient attention economy is one where users can quickly and easily resolve
the many-many problem, and so are able to direct their attention in ways that
effectively contribute to their projects, whatever they might be. An inefficient
attention economy is one where these many-many problems are difficult to re-
solve and it becomes unclear for the agent how best to act in order to realize
their goals. In either case, we can evaluate the success of an attention economy
in terms of the difficulty users have in determining how to act.

Efficiency in the attention economy maximizes the user’s agency; inefficien-
cies confound a user’s agency. Note that the mere investment of time and
attention is not itself evidence of inefficiency. The value of attention is goal
relative and some goals are worth significant time and effort. The time I spend
with an absorbing book or an awesome game is not wasted attention if it’s what
I want to do. The time I spend practicing an instrument has value even if I
occasionally find it tedious. Value is measured not just in time and effort spent
but in progress made.

Designing for the attention economy means designing systems that help their
users be better agents. A social network designed for the attention economy
would provide users with tools for making them effective agents in the world.
This includes a felt sense of control so that users meaningfully understand the
scope and limits of their agency. Mortier et al [23] describe agency as “giving
people the capacity to act within these data systems, to opt-in or to opt-out, to
control, inform and correct data and inferences, and so on.” This sense of agency
is central to the well-being of both the agent and her community [24]. Thus,
from our perspective, designing an attention economy is a political and ethical
imperative as much as it is a technical challenge. The importance of attention
and agency in the construction of meaning is captured clearly in David Foster
Wallaces 2009 commencement speech ”This is Water” [25]

... learning how to think really means learning how to exercise
some control over how and what you think. It means being conscious
and aware enough to choose what you pay attention to and to choose
how you construct meaning from experience. Because if you cannot
exercise this kind of choice in adult life, you will be totally hosed.

Freemium attention

We can evaluate the compensation techniques of social networks like Tsu or
Gems in light of their impact on the economy of attention as described above.
We argue that compensation is not enough to simplify the many-many prob-
lem for the agent, and therefore does not itself address the attention economy.
Instead, these networks have established a schedule of rewards that potentially
complicates the decision making of their users. Reward schedules and positive
reinforcement are critical to learning, but they also motivate addictive behavior
and patterns of dependency that can compromise a users agency and control.
The use of reward schedules and positive reinforcement to direct and manipu-
late attention manifests most obviously in so-called freemium games [26] [27].

7

Soroush et al. [28] finds empirical support for a correlation between in-app
purchases in Candy Crush and lower levels of self-control.

The case of freemium gaming makes clear how schedules of rewards and
reinforcement can be used to compromise or even undermine a users agency.
Instead of assisting in the process of selecting for action, reinforcement learning
trains the user to expect specific rewards when adopting the goals and behav-
iors imposed by the scheduling system. Effectively, these compensation networks
redirect user attention and action to serve the purposes of the network. On these
networks, users see the ads and content determined by the network administra-
tors, regardless of how these inputs assist the user’s autonomy. Compensating
users for this attention doesnt enhance their agency; if anything, introducing
new inputs and outputs may complicate the user’s flow of attention, introduc-
ing inefficiencies in the network. Compensation orients users to the goals of the
network by introducing a new set of input/output relations that the user must
take into account in their evaluation of value. This may be good or bad for the
well-being of the individual, but it is a distinct design goal from the issues of
effective agency discussed in the previous section. Given the tendency of large,
centralized social networks to compromise their user’s privacy and agency, we
believe the reorientation of design goals described in this whitepaper is in order.

Estrada and Lawhead [29] distinguish between systems that disrupt user be-
havior by introducing new computing tasks, from those that leverage existing
behavior to perform useful computational work. They call the latter “natural
human computation”. We see Tsu, Gems, and other such compensation net-
works as a “disruptive” approach to social networking, and propose Synereo
as a “natural” alternative. The distinction between “disruptive” or “natural”
computing systems speaks to the heart of agency as it pertains to the attention
economy. Although there are places for disruptive computing, we believe social
networking should be as natural as possible, for the sake of the user’s agency. A
natural social network wouldn’t complicate a user’s attention by introducing ir-
relevant stimuli, or persuade users into performing meaningless tasks for meager
compensation. Instead, present users with information relevant to their inter-
ests, and oriented for actions that are best aligned with the user’s values. Of
course, the activity of the users themselves define and determine those interests
and values.

What would it mean to build a social network that recognizes the value of a
user’s activity, without simply imposing a schedule of rewards for menial tasks?
How do we determine a user’s evaluation of value, so we know how much their
attention is worth? How do we recognize and reward (not just pay!) people for
doing valuable and useful social work? What tools do users need to be better
agents and build better communities?

Synereo and the emergence of a social consensus

Human beings are endlessly complex systems. Enhancing their agency isn’t
about dumbing things down and making them simple. It certainly isn’t about
telling people what to think or what to feel or how to act. Helping our users be
better agents means filtering through the available information to direct their
attention where it is needed most. It means presenting options for engaging
content that have a clear impact on the content, the community, and the users
themselves. Moreover, users should have the tools for evaluating the impact

8

their engagement has on the network, and to use this information for deciding
what actions would best realize their goals both individually and collectively.
Put simply, users need to feel like they are in control of their presence on the
network, from the level of data security to the level of social identity and ev-
erything in between. Existing social networks tally up likes and reshares, but
they do nothing to describe the network you’re helping to build or how to make
it stronger. The point of these networks is to make you feel like a celebrity of
your own minor fandom, not to make you feel like an agent in control of your
social life. When analytics are available, they are typically offered as a premium
service for advertisers, not a tool for the people to manage their web presence
or organize themselves collectively.

As Bateson says, [30] ”How will people learn that what they do ”counts”?
By counting.” Synereo is designed to give users have a strong sense of their
own capacities as social agents. We do this by counting. When users engage
with content, they will do so understanding the impact their activity has on
the network. User activity is taken to have inherent value that is represented
explicitly in the network. The value of user attention is recognized by the
communities they engage. As a community, our collective values emerge from
this pattern of interactions. And our engagement makes a difference to the life
of content as it spreads on the network.

Synereo represents value on the network in terms of Reo and AMPs. Reo is a
measure of social standing, and accrues or expires naturally as users engage with
the network. AMPs can be used to boost content and has a monetary value.
These tools will be explained in detail in this whitepaper. Crucially, Reo can
be exchanged for AMPs in a way that allows users to stake their reputation on
content that matters to them. By establishing an explicit relationship between
a user’s social standing and the flow of content across the network, Synereo
hopes to build a framework where users have a robust sense of social agency.
A sense that what they do matters. A sense of a community that values their
contributions and will continue to support them.

The exchange between Reo and AMPs establishes a natural mechanism by
which financial reward can track social value. Users can earn AMPs by engaging
the network, and can spend AMPs supporting the content they care about. But
content is constrained by the shape of the network which always takes Reo into
account. The result is that any AMPing of the network must play nice with the
existing social values; the spreading of AMP’d content still requires community
participation to propagate it.

This combination of Reo and AMPs makes the analysis of compensation
on Synereo more difficult than the case of freemium games. Unlike freemium
games, Synereo doesn’t habituate users to expect trivial rewards for meaningless
actions. Users have an active say in the value of their attention and how it gets
distributed. Moreover, there is no central authority determining who sees what
content. Since the flow of content depends on user activity, the network is
imposing it’s own reward system. Synereo moves toward a world where users
are setting the terms and conditions of their own life, instead of merely adopting
the reward schedule of a central network authority. We think this is critical for
building self-supporting communities that can develop shared values and a sense
of social agency to achieve our collective goals.

9

1.3 Synereo: Design goals

Synereo aims to be a social networking framework that focuses on providing
users with an experience that is tailored to their preferences. As there is no
third-party, central, authoritative entity acting as middleman and profiting from
specific habits and types of user interaction on the network, the applications
created on top of this framework are free to put their users in the center. Built
on attention-economy principles, the Synereo network directs its users’ attention
in a way that accurately reflects their social goals. Different applications using
the Synereo framework will also benefit from this user-centric prioritization of
attention, providing them with the information and action types they want at
just the right time and with the right context.

1.3.1 Core concepts: Reo, engagement, and AMPs, oh my!

Reo

Reo is a measure of your reputation as a publisher of attention-worthy content.
Given two participants, say Troy and Abed, in an online community, we write
Reo(Troy,Abed) to indicate a quantitative measure of their relative standing
in the community. Roughly speaking, Reo(Troy,Abed) reflects how much the
friends Troy and Abed have in common have paid attention to Troy versus Abed.
As such, the measure is not symmetric; that is, we normally expect

Reo(Troy,Abed) ≠ Reo(Abed,Troy)

engagement

Reo is built on top of the notion of engagement(Troy,Abed), which is a quan-
titative measure of how much Abed has engaged the content output of Troy;
respectively, engagement(Abed,Troy) is a measure of how much Troy has en-
gaged the content output of Abed.

These two notions feature in the algorithm for prioritizing content in a user’s
stream. Essentially, the more Troy attends Abed’s content, the more likely it is
for Abed’s content to show up in a place in Troy’s stream where Troy will notice
it. Likewise, the higher Abed’s standing in the community relative to Troy, the
more likely Abed’s content will show up in Troy’s stream in a place where he is
likely to notice it.

The AMP Token

To complement these two forces, Synereo introduces the AMP. A user can
publish content with a certain amount of AMPs attached. The algorithm for
prioritizing content also takes into account how many AMPs have been invested
in the content and can use this to bump it into a more desired location. In
this way, AMPs provide a way to purchase a shot at a user’s attention. Users
receiving amplified content will also receive a portion of the attached AMPs. The
more Reo they have relative to the poster, the more their attention is valued by
their shared community, and the more AMPs they will receive proportionally.

10

Distributed ledger, genesis block and mining Notice that while Reo
and engagement are calculated based on the ongoing behavior of users on the
network, AMPs are a conserved quantity. They are effectively purchased and
spent. The distribution of AMPs in a Synereo network is therefore kept in a
distributed ledger, like the bitcoin blockchain. Similarly, when Synereo launches,
an initial supply of AMPs will be available for purchase and distribution to early
users and contributors. Synereo also offers a unique social approach to proof-of-
work that will be connected to a kind of “mining” and AMP creation. However,
the discussion of this is currently out of scope for this paper.

The attention economy

Out of these core concepts we build an economy of attention; a way to manage
this highly limited resource of the human brain. In some sense, this economy
is not unlike an economy in a functioning capital-based democracy. Typically,
such economies come with two dials: on the one hand, citizens can express their
voice through democratic processes, such as elections, referendums, and other
mechanisms where they can cast their vote. On the other, citizens engage in the
creation, distribution and consumption of goods and services and use capital as
a means of facilitating the beneficial flow of this wealth.

Both processes ultimately result in the distribution of goods and services.
And as long as the linkage between votes and capital exchange is sufficiently
weak, citizens have two distinct ways of expressing their individual and col-
lective will about the functioning of the economy in society. When working
effectively, these two channels provide a mechanism for balancing the collective
will (largely identified with democratic participation and self-determination at
that level), with individual will (largely identified with the flow of currency and
self-determination at that level).

The notion of Reo, as can be seen in its technical form in chapter 2, is essen-
tially a kind of attention-based measure of the collective will: it looks remarkably
like a kind of online voting. Meanwhile, AMPs are unabashedly an attention-
based form of currency. As such, these two notions are balanced against each
other and provide a means of balancing collective will with individual will. What
distinguishes Synereo from the idealized capital-based democracy, however, is
the reconciling force of engagement. In point of fact, a democratic society lives
or dies according to the engagement of its citizenry; but there is no objective,
reified measure linking this directly to the distribution and flow of value. In
Synereo, there is - the attention model allows each and every individual to cast
his “vote” and show his engagement without making any special effort beyond
his normal participating in the network - and this additional sophistication cre-
ates more subtle network dynamics, hopefully leading to a more balanced social
model.

1.3.2 User experience

Card-based thinking and designing has been an increasingly popular approach
to UX in recent years, especially on handheld devices, with the shift on the
web happening as well [31]. These cards are now evolving to contain not just
bits of relevant information, attracting user attention to apps and sites, but
provide immediate action items alongside that information. When receiving an

11

SMS using a modern smartphone’s operating system, the “reply” and “read”
buttons will appear right on the card itself, allowing the user to start and
finish his engagement with the attention-requiring item in one go, through one
interface. This move represents a way of presenting information to individuals
that is in-line with what their brain expects, and indeed, with the way their
mind operates.

When cognized information receives conscious attention, it is almost never
composed solely of its sensory-perceived signals. Rather, it is subjectively ex-
perienced as information coupled with the most pertinent actions. A conscious
agent becomes aware of the information after it has been subconsciously pre-
processed to link it with inherent or learned actions[citation], allowing him to
consciously choose and respond quickly without wasting time on the act of sur-
veying the obvious available actions while the information inhabits the costly
space of conscious attention.

This coupling of information and action, presented to conscious attention
due to an urge or a need, represents a mechanism evolved to make the best
use of the precious resource of attention. An urge – or a web app – present-
ing to a user’s consciousness succinct information tied to possible actions is
more likely to receive the attention and engagement it needs and strengthens
the pathway between the originator of the request for attention and the user’s
attention-granting mechanisms. This logic forms the basis for the Synereo at-
tention model: the more a user attends and engages with content, the easier it
will be for the agent originating it to receive further attention from that user.
That agent may be a friend on the network, a business advertising its services,
a vote or discussion originating from a community, or a game or an applica-
tion built on top of Synereo. Further developments of this model include more
fine-grained distinctions between information types, social consensus, and other
signals that shape the network and the flow of information and attention in it.

A central aim of Synereo is thus to bring its users units of information
coupled with relevant actions so that they may attend in a way that is complete,
being respectful of their time and attention. This means overwhelming them
down with unnecessary input and options. We’re not just talking minimalism,
we’re talking freedom. The Synereo architecture does not limit users to specific
actions mandated by it: interactions on Synereo are open-ended. And while
cards themselves play a major role in the Synereo user experience, this principle
will accompany most interfaces available on our platform. Thus, we recognize
the importance of the mechanism and thinking underlying this emerging trend,
and give it its own name in the Synereo ontology.

Step forward and kneel young organizing principle, we dub thee Ceptron. Go
forth and organize online experiences for the good of all peoples everywhere.

A per − ceptron is an algorithm for supervised classification of an input into
one of several possible outputs. It is based on logic gleaned from the opera-
tion of neurons and neuronal networks in brain. In a perceptron, there is a
weighted connection between input and possible outputs. The decision process
may be immediate and ”automatic” or may involve higher-level information in-
tegration and functions, iterations on processing, and conscious attention. The
perceptron algorithm dates back to the late 1950s, where perceptrons were im-
plemented as the building blocks for the first neural networks. The new term
we propose, the “Ceptron”, symbolizes the informational space that contains

12

both input information (“stimulus”) and all possible output information (”re-
sponse)”. This space, presented to the user as an information/action coupling
on Synereo, allows him to immediately engage with, and act on, the message re-
ceived through the specific subset of actions suggested to him - or pause, invest
mindful attention, and travel outside of the proposed pattern.

The types of ceptrons available and the actions within them will continually
evolve and improve to represent a community effort to maximize the utility
offered by their online social network, maximizing and aligning individual and
social agency. This is how we become a community of autonomous, networked
agents.

“Between stimulus and response there is a space. In that space
is our power to choose our response. In our response lies our growth
and our freedom.”

– Viktor E. Frankl

Queuing, priority, and attention

A key organizing feature of information on Synereo, directly shaped by the
attention model, is the prioritized queue of items. Items transmitted to you on
Synereo compete for your attention and are queued and aggregated based on
your history of engagement with content and the people who originate it, your
interests, preferences, time and location, your friends and communities, and so
on. These are not machine-learned details about you; rather, these attributes
manifest themselves into the shape of the network, affecting the way information
flows to you and how it is prioritized for you.

The priority of items in the queue is determined by the amount of current
these items reach you with. As information travels the network, current de-
creases the farther away it is from its point of origin. Each post you make starts
with a capacitor full of electrical charge that is sent out across the wires of the
network as electrical current. The amount of current you may send out to a
peer on the network depends on:

• Your differences in Reo score

• The peer’s engagement score with you (how “far away” he is from you on
the network)

• How the other peers you’ve broadcast to have engaged with this specific
post

• The amount of AMPs invested in the post

• How often you post

Current is only “consumed” if a user is exposed to the post in her stream.
As long as the post is not seen, its charge is free to be offered to users, and that
offering may change based on other users’ engagement with it while it is waiting
in queue or if the user is offline.

Let’s describe a simple situation on Synereo and see how these different
considerations are involved in shaping the experience of a user going through a

13

Figure 1.1: The strength of a post’s Current will determine the order in which
posts queue in your stream.

stream of posts. Suppose that Jeff is a member of a community of friends who
are usually very attentive to his output. Jeff posts a new picture of himself, and
offers a portion of his charge, sent out as current, to each friend. Annie is a close
friend of Jeff and usually attends all of his posts. She receives enough current
to make his post a priority, and sees it right away. Annie likes the picture and
posts a flattering comment, an act that recharges Jeff’s capacitor completely
(no innuendo intended). Jeff’s post has the same amount of charge left as when
it started, meaning its potential to be viewed by the network remains the same,
while Annie’s engagement score with him increases, and so does Jeff’s Reo in
their shared community as a result. Next, Abed, who has been online the entire
time, is slowly approaching Jeff’s post’s position in his stream queue. While
Abed is relatively close to Jeff, Abed has many other interests, also being a
member of other communities in which he has a high Reo score, and so his
stream’s queue is often populated with items with high current as users vie
for his attention. Abed isn’t as impressed as Annie with Jeff’s picture, and he
scrolls through it quickly. This wastes all of the current Jeff has sent his way,
and decreases the amount of current Jeff may offer the friends who have not
seen his post yet. When Pierce comes online, Jeff’s post is the first to appear
on his stream. Pierce stalks Jeff daily, engaging with every piece of content he
publishes, and so even Jeff’s diminished charge, and the relatively small portion
of it he is willing to send to the low-Reo’d Pierce translates to a lot of current
when sent to him. Unfortunately, Pierce is angry with Jeff for not responding
to his instant messages earlier in the day, and so he spends some time looking at
the picture as he mumbles obscenities to himself before scrolling past it furiously.
As Pierce spent some time looking at the picture, Jeff’s capacitor recharges a
bit, but overall takes a hit from this interaction. Jeff’s remaining friends either
ignore or engage with his picture in various ways, until charge, which also slowly
decays over time, runs out to a degree where it cannot reach anyone’s attention
on the network any longer.

... but wait! Pierce suddenly realizes that he had seen an incriminating
detail in Jeff’s picture. Jeff’s watch shows that the picture was taken at a time
where Jeff had claimed to be busy attending to his sick friend, an excuse he

14

used to get out of the study group’s most recent Diorama creating homework
session! Pierce jumps at the opportunity to get back at Jeff for ignoring him.
He amplifies Jeff’s picture post, sharing it to all of Greendale, investing 2500
AMPs to make sure it reaches all of them accompanied by his snide commentary.
Pierce’s action refill’s Jeff’s post’s capacitor completely, and because of the large
investment, also increases its capacity beyond its previous maximum. As most
of Pierce’s plans turn to go, this one backfires as well, and Jeff’s picture, now
enjoying more attention than it would ever have received otherwise, spreads
through the Greendale network and beyond. As each new fan engages with the
picture, Jeff’s capacitor recharges again, and the fan opens up new networks
and communities for the post to flow to. Needless to say, Jeff’s Reo increases
network wide, and he also receives many new friend requests and phone numbers
to boot.

The following week, Dean Pelton decides to advertise a new class added to
the Greendale curriculum. Knowing that he isn’t very popular on the network
and that his Reo score is very low, he wisely chooses to amplify his post, investing
AMPs so that the message reaches every student in Greendale and with high
priority. Since Jeff’s Reo increased dramatically after his picture had exploded
in popularity network-wide, when he sees the Dean’s amplified post, he receives
a larger portion of the invested AMPs than everyone else who has seen it does.

Jeff likes the Dean’s post, as the class added is The Ultimate Blowoff Class:
beginner pottery. Jeff’s rebroadcast of the Dean’s post has a high impact on
the Greendale network, making Dean Pelton’s expensive investment in reaching
Jeff’s attention a success.

1.3.3 User interface

While the above scenario implicitly suggests a social network structure that is
similar to what we’re used to from Google Plus or Facebook, there are many
different interfaces and ways to organize the prioritized queue and the informa-
tion contained within it. Synereo aims to provide its users with multiple ways
to experience the same stream of information. From a Reddit-type view in a
current events community, to a tumblr-type view for an art community, to the
single column stream view for your Home Synereo... which may look like this:

Users may configure each group they participate in to be displayed according
to their preference or accept the default that may be set by its administrators.
Users may also define streams that display items from specific sources, saving
them for when they wish to browse through different parts of the Synereo net-
work, its various communities, and different types of available interactions or
items coming from different applications.

1.3.4 Other applications

Many different applications may be built on top of the Synereo framework,
enjoying the benefits of its distributed technology and attention model. These
applications may choose to use one of the interfaces provided, only changing the
types of information and associated actions in each stream item, or innovate
and offer completely different experiences. Applications that adhere to the
basic information/action unit may offer users to send these items right to their
standard Synereo stream, and if they succeed in engaging the user, find an

15

enduring place in it. Applications that do this may send in a card with your
next move ready to be played in a simple multiplayer game, incoming mails
from senders or topics that the application has learned are important to you, or
a mindfulness application sending you an inspiring message and prompting you
to click it so that it sets a timer for your one-minute meditation. These items
may appear as you browse through your “normal” stream, competing for your
attention with posts from your friends and from other similar applications.

16

Figure 1.2: Synereo stream

17

Chapter 2

Synereo: network model
and user interactions

2.1 Overview

2.1.1 Synereo high-level overview

Figure 1.2 shows an overview of the Synereo ecosystem. It is important to dis-
tinguish between Synereo in its manifestation as a fully-featured social network
and the lower level Network Model and Attention Model. These models are de-
signed to be fully extensible, and to be used to build other decentralized services
on. The lower levels in the stack are thoroughly discussed later in this paper.

2.1.2 Outline of the chapter

In the remainder of the chapter, we introduce the network model from a global
perspective and discuss the attention model and how it fits into it. Next, we map
that onto a distributed model. Then, we map that model onto a distributed
architecture and show how the model maps directly to working code in that

Figure 2.1: Synereo stack overview

18

distributed architecture. Subsequently, we address both gateway and third party
services. Then, we discuss deployment options. Finally, we make a few closing
remarks about the nature of Synereo in the wider ecosystem of social networks.

Notation

Most of the notation adopted here is relatively standard for computer science.
The presentation is primarily functional in the sense that the universe of dis-
course used is built from (structured) sets and functions. Additionally, we do
avail ourselves of higher-order functions, making use of lambda terms λx.term
to define anonymous functions.

Out of courtesy, whenever we are defining a function we first give its type.
We assume a rich ambient type theory that includes basics like tupling (with
fst and snd denoting the first and second projections of a pair, respectively) as
well as fancier more modern machinery like parametric polymorphism and the
usual suspects of collection types like List and Tree, and assume all the standard
functions for collections (map, filter, etc) are well understood computationally
and as mathematical objects. Occasionally we will use expressions like node(G)
as a type; this should not be taken to mean that the model presented here fun-
damentally requires a dependent type theory. However, dependent type theory
is becoming more and more mainstream, and so we don’t feel that a more ag-
gressive use of dependent types would actually present a serious obstacle. To
the contrary, it would likely simplify the model in many places.

Essentially, all of these assumptions amount to making it quite straightfor-
ward to render the model as a simulation in a functional language. Likewise, a
reader with some facility in functional programming should have no difficulty
parsing the presentation of our model.

2.2 A dynamics for social agency

In this section, we describe the network and its dynamics. We show how en-
gagement, quality of attention, and the flow of content are related to Reo, a
measure of reputation in the network, and AMPs, Synereo’s information flow
currency. We’ll present the model in stages of refinement. The first step regards
the network as a whole. The next step shows how the network as a whole is
mapped onto concurrently running distributed compute nodes relying solely on
local interaction.

2.2.1 Network Model

The description presented here will provide a global or “god’s eye” view of the
network to illustrate the dynamics of the whole network. In subsequent sections
we will show how to realize these global dynamics in terms of entirely local
interactions in a distributed network of interacting processes.

We’ll begin by modeling a Synereo network as a graph, G, with nodes,
written node(G), representing users of Synereo (plus their system footprint)
and edges, written edge(G), representing communication links through Synereo.
When it’s convenient we’ll write inG(N) to denote the set of edges in G with N
as the target, and similarly outG(N) to denote the set of edges in G with N as
the source. More formally,

19

inG(N) = {E ∈ edge(G) ∣ N = trgt(E)}

outG(N) = {E ∈ edge(G) ∣ N = src(E)}

We calculate the neighbors of a node

neighborsG(N) = {N ′ ∈ node(G) ∣ ∃E.N = src(E) && N ′ = trgt(E)
∣∣ N ′ = src(E) && N = trgt(E)}

Events Synereo users take actions, such as posting content, liking posts, etc,
that are represented in terms of events in the system. The type of such events is
written Event[Content], parametric in the type of content. To each inhabitant
of Event[Content] we associate a target trgt ∶ Event[Content] → node(G), a
source src ∶ Event[Content]→ node(G), as well as a way to retrieve the content
of the event, content ∶ Event[Content] → Content. As we will see in the sequel
we associate a notion of charge with the transmission of content through the
network. Events play a role in keeping track of charge associated with content.
As a result, we also associate a map charge ∶ Event[Content] ⇒ R+ to access
the event’s component of the charge associated with a particular transmission
of content. Likewise, events will serve a purpose in the redistribution of AMPs,
essentially serving as a carrier for the transmission of AMPs from one user to
another. Hence, we also assume an accessor, AMPs ∶ Event[Content]→ R.

Closely associated with charge is the notion of automatic rebroadcasting.
Some users will wish for some content to achieve as much reach in the network
as possible. A basic element of this capacity is whether or not an event can
be rebroadcast, given that there are not other information flow policies in play
governing the content (see section 2.2.9). For our purposes it suffices to associate
a boolean with events, rebroadcast ∶ Event ⇒ Bool, indicating whether it is
permitted to rebroadcast the event to the recipient’s connections. This may be
linked to user control so that they can decide what content travels beyond its
initial targets.

It will sometimes be convenient to assume a constructor for events, event ∶
node(G) × node(G) × Content × R × Bool ⇒ Event, recognizing that this is a
minimal abstraction. A real implementation is likely to have a much more
elaborate constructor.

A sequence of events, sometimes called a history, is treated as an element of
the type List[Event[Content]]. It is convenient to be able to collect the events in
a history, H, with the same content, c, extent(H,c) = filter(H,λe.content(e) ==
c). Note that a single user action, such as posting content to a group of friends,
may generate many events. So, other collection types, such as Tree may be used
to provide histories where some events cannot be ordered, or interleaving makes
less sense. When convenient and there is no risk of confusion, we elide the type
parameter of the type of events, writing simply Event instead.

Reo

Definition 1 (rank) rank ∶ Event → [0,1] is a primitive numeric measure of
the attention trgt(e), has given the event, e, generated by src(e).

20

For all intents and purposes, rank is a measurement of the amount and quality of
attention given by a user on Synereo to a specific unit of information created by
another user. Every piece of content appearing in your Synereo stream receives
a rank score depending on your engagement with it. In a social network setting,
engagement is measured by liking, commenting, sharing, and so on. However,
other settings may have different engagement measurements. Advancements
in technology, allowing more direct interfaces with correlates of attention, may
further improve the fidelity of this measurement.

Setting

Example 1 Assuming src(contentPosting) = Stilgar and trgt(contentPosting) =
Usul

rank(contentPosting) = 1

could be used to represent the fact that Stilgar read, liked and reshared Usul’s
posting, while setting

Example 2
rank(contentPosting) = 0

could be used to represent that Stilgar ignored Usul’s posting.

Definition 2 (engagement) engagement ∶ node(G) × node(G) × List[Event]→
R is a measure of the attention Node B, the second parameter, has given to
events in a history, say H, generated by Node A, the first parameter. Thus,
without loss of generality, we may assume that foldl(H,λacc e.acc∪{src(e)},{}) ==
{A} and likewise foldl(H,λacc e.acc ∪ {trgt(e)},{}) == {B}, for if not we sim-
ply filter the history, providing filter(H,λe.src(e) == A && trgt(e) == B) as the
parameter instead.

engagement(A,B,H) =
⎧⎪⎪⎨⎪⎪⎩

engagement(A,B,H ′) + rank(e)
#(rank(e),H′)

, ifH ′ = e ∶∶H
K(A,B), otherwise

(2.1)
where #(rank(e),H ′) denotes the frequency of the rank(e) when applied to all
of H ′ and K(A,B) is some base level measure.

Engagement is a measure of how attentionate a user is to another user’s
content and actions on Synereo. Engagement determines how difficult it is for
users to broadcast information to their peers. The higher the engagement score,
the easier it is to broadcast to the “engaged” user. Notice that engagement is not
a simple accumulation of rank. Instead, events with the same rank contribute
less and less as their frequency increases. This is intended to lower the impact
of repeated responses such as “liking” every post, normalizing the effect this
indication of provided attention has on the measure of engagement. i.e. if
someone is statistically likely to engage a given post, the effect on engagement
score is reduced as it is less meaningful as an indicator of provided attention.

The engagement score is more difficult to change the farther away it is from
its neutral, starting point. The more a user is engaged with you, the less impact
on engagement each further interaction with you will have.

Engagement score will decay to its neutral point over time.

21

Definition 3 (bundle) bundle ∶ node(G) × node(G) → ℘(node(G)) is the set
of nodes in G which to which both parameters are connected.

bundle(A,B) =
{N ∈ node(G)∣∃E1,E2 ∈ edge(G).
(src(E1) = A, trgt(E1) = N, src(E2) = B, trgt(E2) = N) or
(src(E1) = N, trgt(E1) = A, src(E2) = N, trgt(E2) = B) or . . .}

(2.2)

The bundle between each two nodes on the network represents the area of
the network that is shared between these nodes and that they are affected by.

Definition 4 (Reo) Reo ∶ Node ×Node→ R is a measure of how the common
community, written bundle(A,B), of the two node parameters, say A, and B
values the contribution of each relative to the other.

Let S = (⋃N∈bundle(A,B)bundle(A,N)) ∖ bundle(A,B) in

Common(A,B,H) = ∑
N∈bundle(A,B)

engagement(A,N,H) ∗ engagement(B,N,H)

(2.3)
and

Reo(A,B,H) = Common(A,B,H)
∣bundle(A,B)∣

+ ∑
N∈S

Reo(A,N,H) (2.4)

Notice that, as currently formulated, Reo is asymmetric, i.e.

Reo(A,B,H) ≠ Reo(B,A,H)

Using these definitions it’s easy to see (figure 2.2) that for two Synereo users,
Usul and Stilgar 1, no matter how well known Usul is to his community or Stilgar
to his, they have equal standing if their respective communities do not overlap.

If their communities do overlap, however, then Usul’s standing with respect
to Stilgar will be higher than Stilgar’s standing with respect to Usul just when
their common community gives more attention to Usul’s output (figure 2.3).
This discussion should indicate precisely how the construction of the Reo mea-
sure defeats Sybil-like attacks. If either Stilgar or Usul create an army of bots,
all ready to attest to the power of their creator’s word, this attestation is highly
unlikely to contribute to the standing of either in the eyes of the other because
they will not share the bots in their common community.

AMPs

AMPs constitute a form of attention-based currency. They are primarily a
conserved quantity. The network begins with a certain fixed amount. There is
a distributed ledger (like blockchain) that maintains the distribution of AMPs
in the network. Intuitively, AMPs may be spent to amplify the visibility and
reach of content.

1and our sincerest apologies to Frank Herbert

22

Figure 2.2: Reo calculation - empty bundle

Figure 2.3: Reo calculation - full bundle

23

Definition 5 (AMP) An AMP is a unit of currency available for a user, rep-
resented by a node, N to spend amplifying visibility and reach of content, through
sharing and republishing.

2.2.2 How Reo and AMPs get used in Synereo

Next, we look at the events Synereo users generate and how they are influ-
enced by Reo and AMPs. With respect to content sharing, there are essentially
two kinds of events, those associated with the production of content and those
associated with the consumption of content.

We associate production of content with volition, whether it is production
of original content or resharing content received. This is in contrast to content
becoming more likely to show up in a user’s stream because it has received some
form of attention. Conversely, we associate consumption with the deployment
of attention. We recognize that there is some overlap in these categories. For
example, “liking” a post is an act of volition, but the aim of such an act is to
acknowledge deployment of attention.

How does Reo figure into the publication of content in the network? Likewise
how do AMPs influence the publication process? Let’s consider a user, such as
Abed, who wants to share a video and so publishes it to his community of
friends. This means that the message with the link to the video is offered to
each Synereo node associated with one of Abed’s friends in Synereo. The node
on the receiving end will initiate a process to determine the ordering of that
message in Abed’s friend’s stream, and that process makes essential use of Reo
and AMPs.

Network dynamics and information flow dynamics

In order to address this we have to introduce the dynamics of information flow
in the network. The most basic and natural intuition is that events flow from
node to node over the edges connecting them. As a first approximation we will
treat the network as fixed and discuss how content flows in that fixed network.
The reality, however, is that the network is dynamic, both at the level of nodes
supporting the Synereo protocols and at the level of the social network, who is
connected to whom, who is friends with whom. Moreover, the network topology,
especially the topology of the social network, changes as a direct consequence
of various content flows. Abed posts an interesting video. Troy shares it with
a friend, acknowledging Abed’s authorship. The friend is impressed and asks
Troy for an introduction to Abed.

In today’s world, network dynamics and their mutually recursive dependency
on information flow dynamics are the bread and butter of social networks. Being
able to model this phenomenon succinctly and precisely ultimately requires
moving to a different approach, and is another key reason why we introduce a
process calculus based model in subsequent sections. The concept of mobility
in the π-calculus captures this notion perfectly in a beautiful algebraic theory,
rather than in an adhoc manner. We recognize that while the theory of mobile
processes is nearly 30 years old, it’s still new to many. So, we get there in stages.

Part of the advantage of having a “god’s eye” view is that we can not only
see the whole network, in its entirety, but we can see the whole of time, in its
entirety. Fortunately, through the magic of recursion, we don’t have to see it

24

all at once! We can approximate the behavior at a single node in terms of a
recursive type.

User response To see this, let’s assume that we have a basic type Response
that represents the possible ways a user might respond to content coming their
way. At this point in the modeling, we don’t really need to know all that goes
into this type. We know, for example, that it will be correlated to rank, and we
could even take the target of range as a proxy for Response, but it’s actually
better if we can make our model of flow dynamics generic in this type. It allows
us to change our minds later, if we refine our understanding of user response.

There is one aspect of user response that we can commit to, though: they
generate new events in the system in response to events coming their way. Thus,
a more full accounting of user behavior is a pair, their local response to the
content, and the collection of events they generate in response to the content,
i.e. the communications, reposting, comments, etc that happen as a result of
being presented with an impression.

AMP distribution and other state As this is where the temporal dynamics
are being modeled, it also makes sense that the AMP distribution figures into
this type. That is, AMP distribution changes in response to events in the system.
Likewise, it makes sense to model relevant features of a user’s stream, and all
other aspects of state associated to individual users here. For our purposes we
assume a type State, with accessors AMPs ∶ State ⇒ R+ and stream ∶ State ⇒
Stream[Content]. More generally, we assume that State supports a rich algebra.
It’s not unreasonable, for example, to assume that a projection of the type
includes a vector space.

State predicates In the sequel it will also be convenient to have a language
for predicates on states, alternatively a means of describing sets of states, rec-
ognizing that these are more or less interchangeable. We defer a specification
of such a language until the last possible moment. For now, we simply adopt
the notational convention that S, T, . . . are used to range over such predicates
or sets. Note that individual states can be trivially lifted to predicates.

Continuations There’s a final aspect of user response that often goes unno-
ticed, they continue their behavior as users.2 How a user behaves subsequently,
as a function of the impressions they received, is part an parcel of a good model,
one that takes into account an actual interaction between user and system.

Node agency

Equipped with these intuitions, we can model behavior at a node. A naive ap-
proach models behavior as a function, k, that takes an event, e, and determines
a single 4-tuple recording the user’s local response, the user’s new supply of
AMPs, the events the user generates, and the continuation of the user’s behav-
ior. This choice, however, implies that user behavior is completely deterministic.

2Or not! Sometimes, when presented with something a user chooses to cease being a user
of the system, but even this behavior should be accounted for in our model.

25

A more realistic choice allows for some intrinsic non-determinism in user behav-
ior. Thus, instead of returning a single 4-tuple, it returns a set of 4-tuples.
Notationally speaking, it is traditional to denote continuations using a k, and
since even the initial behavior, broadly speaking, is a kind of continuation, we
denote the type of user behaviors with a K.

Definition 6 (node-agent)

KG[Response] ∶ Event => Set[Option[Response]×State×List[Event]×KG[Response]]
(2.5)

Given k ∶ KG, and e ∶ Event, we have k(e) = {(r, a, [e1, . . . , eN], k′), . . .} where
r is the local response (enriched to Option[Response] to include no response at
all); a is the user’s updated state (including its updated supply of AMPs, etc);
[e1, . . . , eN] is a set of generated events; and, k′ is the continuation of the user’s
behavior. It will be useful to be able to pick out the components of an element
of k(e) symbolically, rather that just by index, which we denote rsp, state, ev, k.
The entire set of 4-tuples can be seen as a menu of options, or range of possible
behaviors of the user, in response to the incoming event.

Example 3 For any state, say a, we can define the null behavior 0(a) is the
one which does nothing in response to any event, and keeps on being the null
behavior.

0(a) = λe.{(None, a, [],0(a))} (2.6)

Example 4 Similarly, we can define the echo behavior, echo(a), as the one
which echoes back to its sender any event it may have sent (and keeps on being
the echo behavior).

echo(a) = λe.{(None, a, [echo(e)], echo(a))} (2.7)

where echo(e) = event(trgt(e), src(e), content(e),AMP(e), rebroadcast(e))

Example 5 Continuing in this vein, we can define the forwarding behavior,
forward(a), as the one which forwards to all its node, N ’s connections any con-
tent it receives (and keeps on being the forwarding behavior).

forward(a) = λe.{(None, a,w, forward(a))} (2.8)

where w = [event(trgt(e), f, content(e),0, true)∣f ← neighbors(trgt(e))]

Example 6 To illustrate the use of options we can define a non-deterministic
forwarding behavior, nforward(a). Suppose that npartition provides a random
partition of a set. That is if (f1, f2) = npartition(neighbors(N)), then neighbors(N) =
f1 ∪ f2. To model a process that non-deterministically forwards content either
to some random subset of neighbors(N) or its complement we could write:

nforward(a) =
let (f1, f2) = partition(neighbors(N)) in

λe.{(None, a,w1,nforward(a)), (None, a,w2,nforward(a))}
(2.9)

where w is defined as in the previous example and w1 = filter(w,λe.trgt(e) ∈ f1)
and and w2 = filter(w,λe.trgt(e) ∈ f2).

26

Initiative The astute reader 3 will have noticed that inhabitants ofK are reac-
tive. They do not behave except in response to external events. In real networks
users are not always so passive. The way we model this without stepping outside
this framework is to treat events whose src and trgt are the same, i.e. events sent
from a node to itself, as providing the basic means to model initiative in a node.
That is, there are events of the form initiate, with src(initiate) = trgt(initiate) such
that for any k ∶ KG, k(initiate) = {(None, a, [e1, . . . , eN], k′), . . .}. Given one such
option from this menu, the events [e1, . . . , eN] are sent to their respective targets
without any observable external event causing the node to send them.

Accessors We can use a similar trick to provide accessors to state associ-
ated with node behavior over time, like AMPs. For our purposes, we will as-
sume an event of the form get, such that for any k, k(get) = {(None, a, [], k)}
allowing us to access the node’s supply of AMPs (or any other state, in an
elaborated version of the model.) It is convenient, therefore to define a function
AMPs ∶ KG ⇒ R+ that picks out the AMP component of the state, i.e. AMPs(k) =
AMPs(state(nth(k(get),0))) and similarly stream(k) = stream(state(nth(k(get),0))).
We assume polymorphic versions of these functions, that lift to the set of op-
tions. Thus, for example, state(k(e)) = {state(opt) ∣ opt ∈ k(e)}.

Using this approach a state predicate, say S, can be smoothly extended to
a node behavior, say k, with k ∈ S just when state(nth(k(get),0)) ∈ S.

A more experienced reader may notice similarities between this model and
Hewitt’s actor model.[32] There are essential differences, and while they are
too numerous to list exhaustively, one that is key is that this model makes no
assumptions regarding the fairness of communication. Instead we rely on a
notion of equivalence and substitutability to impose that kind of order from
“below” so to speak.

Agent equivalence This presentation of node behavior is amenable to some
fairly standard techniques. One of these provides an effective notion of the
equivalence of node behaviors, or when one node behavior can be substituted
for another. The technique is called bisimulation. The intuition is that two
behaviors are equivalent if anything the one can do, the other can do and vice
versa.

Definition 7 More formally, k1 is bisimilar to k2, written k1 ≈ k2, if for each e
and (r1, a1, es1, k′1) ∈ k1(e) there exists (r2, a2, es2, k′2) ∈ k2(e) such that r1 = r2,
a1 = a2, es1 = es2, and k′1 ≈ k2, and vice versa, with k1 and k2 swapping roles.

Properties extended in time The shape of bisimulation reveals something
about the recursive nature of continuations: they allow us to define properties
of node behaviors that extend through time. Here’s a simple example. Recall
the rebroadcast predicate on events. We can ensure that every continuation in
every option respects the predicate throughout its behavior following a simple
recursive scheme.

Definition 8 (respectful) we say k ∶ KG is respectful, if given a history, H,
content c, and an event, e ∈ extent(H,c), then

3That’s you, my friend.

27

• if for each (r, a, es, k′) ∈ k(e) for all e′ ∈ es such that src(e′) = trgt(e) then
content(e′) = content(e) ⇐⇒ rebroadcast(e) == true;

• k′ is respectful.

The idea is to thread the basic predicate, which in this case ensures that con-
tent is not rebroadcast unless the predicate controlling that was true, throughout
the rest of the behavior by insisting that every continuation in every option also
enjoys the same property, recursively.

Definition 9 (preservation) More generally, given a state predicate S, we say
a node behavior k is S-preserving (alternatively, conserving) just when k ∈ S and
for any e and (r, a, es, k′) ∈ k(e) we have k′ is S-preserving.

This scheme is used throughout this paper (see definition 12) because it is
so fundamental to reasoning about reactive decentralized, distributed systems.
Moreover, there is a close connection between bisimulation and predicates ex-
tended in time arising from the fact that they both derive from this underlying
scheme. Furthermore, the scheme also provides some insight into the much more
powerful tools for governing node behavior we describe in section 2.2.9 on social
contracts.

From this point on we assume behaviors are restricted to repectful behaviors.
Stepping back we can see unequivocally that this model is only an approx-

imation. Why? Because there is no place in this type equation to model the
change in the structure of the graph, G, that may result in responses to events,
as discussed earlier. In fact, to provide such dynamics would considerably com-
plicate the model. The graph G would have to become intertwined with node
behavior and state. When we get to the π-calculus model we will see that this is
exactly what happens, and the mutual recursion between graph dynamics and
information flow dynamics will be clearly and cleanly accounted for.

Still, this formulation does provide an approximation to the behavior of the
global network. This is given simply as a function,

Definition 10 (network-agent)

GKG[Response] ∶ node(G) => KG[Response] (2.10)

A function of this type assigns user behavior to each node in the graph. To
provide a naive simulation of a Synereo network, G, is to specify an inhabitant of
the type GKG, i.e. some function, gk, taking each node N in G to its behavior,
gk(N). With this basic model of flow dynamics in a given network we can
enrich the model to include the effects of charge and current.

Before we move on, though, it is important to point out that user behavior
is not the sole behavior on the network. There are protocols running behind the
scenes, like the calculation of Reo, that support the user’s experience. The model
above is presented at a level of abstraction that easily encompasses both user
behavior and lower level node behavior. This provides yet another justification
for having the model be parametric in the type Response, but also means that
just by distinguishing between user events and lower level node events, we can
provide a uniform account of the whole system. Therefore, in the sequel we will
refer to inhabitants of KG as node behaviors rather than user behaviors.

28

2.2.3 Charge and current

This definition of this process makes use of the principles of electric flow. To
this end we introduce the idea of current and relate current to Reo and AMPs.

Definition 11 (charge) charge[Content] ∶ List[Event[Content]] × Content ⇒
R+ In Synereo a user imparts a charge to the transmission of content. The
network of Synereo nodes is required to keep track of the aggregate, charge(H,c) =
∑e∈extent(H,c) charge(e).

Intuitively, with each reproduction step in the path of content throughout the
network, charge, the charge associated with the content dissipates a little. Unless
it is replenished, ultimately, the charge is completely spent and the content can
travel no further on it’s own. Attention, i.e. user engagement is the only means
for charge to be replenished. This places restrictions on legal node behaviors.

Definition 12 (charge-conservation) More formally, we say k ∶ KG is charge
converving, if given a history, H, content c, and an event, e ∈ extent(H,c), then
for every (r, a, es, k′) ∈ k(e), we have that

• if the response, r, to the event, indicates engagement, i.e. rank(e) > 0,
then charge((H ∖ e) + es, c) ≥ charge(H,c);

• if the response, r, to the event, indicates no engagement, i.e. rank(e) = 0,
then charge((H ∖ e) + es, c) < charge(H,c); and

• k′ is charge conserving.

From now onward we assume we are working with charge conserving node
behaviors. It is worth taking a moment to understand the import of this choice.
Rather than providing an operational account of charge at the level of node
behavior, we insist on a property of all the node behaviors in the network. We
don’t care how this property is manifest, just that it is. This gives a great deal
of freedom to explore a variety of implementations. The flip side is that this
imposes a burden of proof on node behaviors that participate in the network.
How this burden gets discharged is of considerable interest and one of the crucial
features of Synereo’s notion of contract.

Definition 13 (current) current ∶ GKG × Event × List[Event] → R defines the
force of flow of a content publication event e over a connection between s = src(e)
and t = trgt(e). Given gk ∶ GKG, AMPs(e) ≤ AMPs(gk(s)) current is calculated

current(gk, e,H) = charge(H, content(e)) ∗ AMPs(e) ∗ engagement(s, t,H) ∗
Reo(s, t,H)

We can normalize current, nc(gk, e,H) = 1 − 1
current(gk,e,H)

.

We relate current to the competition for attention. Roughly, current is in-
versely proportional distance from the top of a user’s stream. 4

4This idea is more general than a linearly organized stream. If post display information
was organized in 2 or even 3D space, then current would be inversely proportional to those
points most likely to correspond to the center of the user’s attention.

29

Definition 14 (priority) priority ∶ GKG × Event × R+ × List[Event] → N repre-
sents the distance from the top of the stream a piece of content associated with
publication event e over a connection between s = src(e) and t = trgt(e), and is
calculated

priorityL(gk, e,H) = floor(L/log(current(gk, e,H)))
where L is the length of the view of the event target’s stream(gk(t)).

High current behind a given content publication event means it’s more likely
to be seen by the user. Thus, Usul’s post is more likely to get Stilgar’s attention
when Usul has a high standing in their common community, i.e. a high Reo.
Likewise, if Stilgar engages Usul’s posts more frequently, then Usul’s recent
post is more likely to appear at the top of Stilgar’s stream and thus get his
attention. Notice that if Stilgar’s standing in the common community isn’t so
high and/or Usul engages his output less frequently, then Stilgar can still gain
Usul’s attention if he is willing to spend AMPs to promote the posting.

Slightly more formally, in a network of respectful, charge conserving node
behaviors, we can associate priority with a probability that a user will see content
associated with a post. Roughly speaking, this probability is proportional to
priority. This begets a probability, also proportional to priority, that the post
receives engagement from same said user. Node behaviors that conserve (in the
sense of paragraph 2.2.2) the probability assignment will improve signal given
attention by the collective. Similarly, such node behaviors will dampen signal
ignored by the collective.

2.2.4 Intention and impact

Given two state predicates S and T we write ⟨T∣S⟩ for the probability (ampli-
tude) of T given S. Suppose now that S is intended to describe conditions on
the state of a node, say N , just prior to receiving a publication event, say e,
and T conditions on the state of the node after responding to the event and we
want to measure the likelihood of observing T given S after N has processed e.
The node N is in state S in any gk ∈ GKG with gk(N) ∈ S, thus we what to
measure the likelihood that state(gk(N)(e)) ∈ T, which we would compute by
⟨T∣state(gk(N)(e))⟩, but we weight this by current. Because current is depen-
dent on a history, H, we either need to include it as a parameter or “quantify
it out” by summing over histories.

⟨T∣ e
gk

∣S⟩ =∑
H

nc(gk, e,H) ∗ ⟨T∣state(gk(e))⟩ (2.11)

Likewise, this is dependent on being provided a gk. We can “quantify out”
this parameter by summing over all gk ∈ S.

⟨T∣e∣S⟩ = ∑
gk∈S

∑
H

nc(gk, e,H) ∗ ⟨T∣state(gk(e))⟩ (2.12)

Note that additional assumptions are required to guarantee that these sums
converge. Accepting these requirements, however, gives a quantitative language
for talking about how the network responds to content. In particular, if S
represents a characterization of the current state of affairs, and T represents a
characterization of intent, in the sense that it describes the set of acceptable
outcomes, then ⟨T∣e∣S⟩ represents the impact of an event e, computing just how
likely the event is to bring about intended outcomes.

30

Rebroadcasting

In many cases it’s not necessary for a user to explicitly reshare the content.
Instead we can define rebroadcast ∶ KG ⇒ KG.

Definition 15 (rebroadcast)

rebroadcast(k)(e) =
for((r, a, es, k′)← k(e)){
⎧⎪⎪⎨⎪⎪⎩

(r, a, es +w, rebroadcast(k′)) if rank(e) > 0, rebroadcast(e)
(r, a, es, k′), otherwise

}
(2.13)

where w = [event(trgt(e), f, c,0, true)∣f ← neighbors(trgt(e))]

By actively engaging with content, a person gives his “stamp of approval”
to it. This does not necessarily mean that he endorses the content, only that
he found it noteworthy or worth discussing (or engaging with in other ways),
and so the network will try to bring it to the attention of others who may feel
the same way.

2.2.5 Network dynamics theorems

In this section we formalize the intuitions regarding collective attention and
signal improvement. What does it mean to improve signal in a network? One
simple answer is that a node receives content that the network determines it
is likely to find engaging; moreover, there is a very good fit between content
the network determines a node will find engaging and content a actually finds
engaging.

It is important to note that engagement is distinct from like and dislike. A
user may find some content apalling, and as a result feel compelled to engage.
This is an oft told experience of the social activist, for example. Likewise, a user
may find some content less compelling precisely because it fits their world-view
and provides no challenge or surprise.

Thus, we want to demonstrate that Synereo network provides its users more
and more engaging content rather than coccooning them in a mesh of comfort-
able and soothing impressions.

Likewise, we should be able to show that when individuals and subnetworks
become more effective at providing engaging content, then they are rewarded:
their standing in the community improves, and their ability to amplify signal
also increases.

Socially meaningful proof-of-work and “mining” AMPs

If all value associated with cryptocurrency must ultimately trace back to value
originating in fiat currency the transition to cryptocurrency will be a slow pro-
cess, indeed. If, however, we provide a mechanism whereby a key aspect of the
creative process is reflected in the AMP’s relationship to value, that process can
be dramatically accelerated. What everyone implicitly understands, yet very

31

few explicitly acknowledge is that creativity has a distinctive mark: creative
processes are ex nihilo; they generate something from nothing! Whether it’s a
new algorithm, a new song, or a new way of looking at the world, we recog-
nize creativity in the freshness and newness of the offering – something is there
that wasn’t there before. Human life vitally depends on the font of creativity;
without the renewal of creativity value slow receeds from our lives.

However, without a mechanism whereby that creativity results in the cre-
ation of currency, none of the value created by a genuinely creative offering is
recognized. All of the existing currency traces value back to some other source.
So, without such a mechanism the creative act is not recognized properly by the
system. Note though, that if they find their audience, the consistently creative
participant in the network will have high Reo. Their standing in the community
will reflect the recognition of their creativity. If they had a means by which
they could turn some of their accumulated Reo into AMPs, literally capitalizing
on their reputation, then the system would actually have a means to recognize
the creation of value in the creative act.

2.2.6 Simulating the network dynamics

To simulate the dynamics of the network we can model a user population in
terms of distributions. Content preferences can be modeded in terms of a dis-
tribution over histories of events, while initial conditions are distributions over
AMP allocation and initial engagement measures. Given this data we can watch
how content flows in a simulated Synereo network. More technically, it is possi-
ble to model the dynamics of a network organized in this manner using Markov
processes. Of the Markov process analytic machinery, the best suited for these
purposes are the more recently developed labelled Markov processes [33]. We
hope to publish our simulation efforts in a subsequent paper.

2.2.7 A decentralized version of the network model

While the model presented above is good for getting a view of the network
dynamics, as a whole, it assumes a “god’s eye” view of the social network. This
is impractical for a distributed implementation. The question is whether there
is a formalism sufficient to the task of reasoning about the global dynamics
while restricting any formal specification to the local behavior of nodes in the
network and their interactions with other nodes in the network. Without such
an intermediate model it would be hard to be confident that any distributed
implementation actually manifested the intended global network dynamics. In
the next section we describe just such a model.

New tools for distributed applications

The mobile process calculi constitute a family of computational formalisms [34]
designed to be for concurrent and distributed programming what the lambda
calculus is for functional programming [35]. Among the mobile process calculi,
Robin Milner’s π-calculus is paradigmatic, and the variant known as applied
π-calculus [36] has the richest toolset currently. (In the interest of keeping this
paper somewhat self-contained we have provided a very brief introduction to the
π-calculus in appendix 2.7.) The applied π-calculus has been used to describe,

32

reason about, and prove correct a variety of protocols, such as electronic voting
[37].5

In the next section we will develop a distributed model of the Synereo net-
work dynamics using the π-calculus. There are three key ideas at play. The
first is that the graph of the previous model will be represented as the parallel
composition of processes representing the nodes of the graph, while the edges of
the graph will be represented by channels these processes use to communicate.
The second is that all the measures, like Reo and AMPs that are used to influ-
ence network dynamics will be internalized and used in protocols between the
processes representing the nodes. We will see that the global dynamics arises
as the dynamics of ensembles of these processes as they interact.

One final key idea is to remember that π-calculus expressions live a dual life.
One the one hand π-calculus expressions are actually programs. They represent
(source code for) processes that evolve by interacting and communicating with
each other. Moreover, the parallel composition of a collection of π-calculus
processes is itself a process, and reasoning about the behavior (aka dynamics)
of that process is reasoning about the behavior of the whole network. In short,
the π-calculus enables us to reason about the behavior of the whole by reasoning
about the behavior of the parts. We only have to compare the behavior of the
encompassing network process to the global dynamics to ensure we have met
the global specification.

On the other hand, they are formal expressions in a formal calculus. As such
they can be treated as syntactic entities; thus, the syntactic entities that repre-
sent the graph of the social network can be treated merely as an idiosyncratic
data representation for the graph. As long as the graph structure can be recov-
ered, then these syntactic representations can be the input of the graph required
in the definitions in the previous section (2.2.1). This secures a connection be-
tween those definitions, the global dynamics, and the π-calculus representation
of the network.

Spelling it out a bit more, verifying compliance proceeds by a structural
induction on the shape of the process expression, which just happens to encode
the shape of the graph.

The π-calculus in one easy lesson

Far from asking that we reduce the richness of experience to abstractions like
1’s and 0’s, the π-calculus suggests that computation, much like physics or
biology, is built from interaction and exchange. At the heart of this model is a
decomposition of interaction in terms of two kinds of processes, one waiting for
input, and the other providing output, together with a means for them to come
together and make the exchange. In symbols, the process x?(y)P is waiting on
the channel x for input, which when supplied will be bound to y in the body
of P ; meanwhile, x!(z) is the symbolic expression of a process that supplies the
data z on the channel x.

In this model, processes are considered autonomous, just like molecules in a
solution, or devices on the Internet. Symbolically, we put processes P , Q, and
R together in a mixture with expressions like P ∣Q∣R. Because the ∣ represents
a freely mixing solution, or a computational situation like the Internet where

5This turns out to be fortuitous, as the Reo calculation protocol is effectively a form of
electronic voting.

33

devices may be mobile, the processes P , Q, and R are free to move around
in P ∣Q∣R without changing the meaning of the expression. That is, P ∣Q∣R =
Q∣P ∣R = Q∣R∣P , etc. In this sense, the ∣ operator represents a very primitive
form of distribution.6

Now, in a mixture of the form x?(y)P ∣R∣x!(z) the process, x?(y)P which
is waiting for input on the channel x can come together with the process
x!(z) which is ready to output z on the channel x and when they come to-
gether the data can be passed into P . Again, symbolically, x?(y)P ∣R∣x!(z) =
x?(y)P ∣x!(z)∣R. When the data is exchanged the subexpression x?(y)P ∣x!(z)
rewrites to P{z/y} indicating that everywhere y was mentioned in P it is re-
placed with the data z. Again, in symbols, x?(y)P ∣x!(z)∣R → P{z/y}∣R.

For a more detailed account the reader can consult the appendix 2.7 or
any of the wealth of papers on the model. Perhaps the most important take
away is that it is consistent with the computational model the calculus entails
to interpret π-calculus channels, like x in the expressions above, as persisted
queues. Thus, x?(y)P is interpreted as a program waiting for input from a queue
named x, and x!(z) is interpreted as a program that will output a message z on
a queue named x. Then the π-calculus rewrite rule discussed above is simply
programmatic communication over the queue. (See figure 2.12 for a complete
translation to Scala.)

As mentioned above, the π-calculus provides a simple and clean model to
express and reason about network dynamics as a result of information flow
dynamics. In the π-calculus communication topology changes as a result of the
information flow dynamics quite simply because channels are part of the content
of messages. Thus,

www?(useremail)useremail!(private)private?(request)
∣ www!(myemail)myemail?(private)private!(sell)

(2.14)

is a simple process made up of a server (the top process), running concur-
rently with a client (the bottom process). The server waits at www for a client
to approach, provide an email, and request a session with the session access to
be sent in an email. The client approaches the server at www, providing an
email where to send the session access, and then makes a sell request in the
private session. The first exchange is at the well known channel www, but all
the rest are on channels learned as part of interaction. The communication
topology is changing with each exchange!

Social graphs as distributed processes

As mentioned above, the first difference between the network model as depicted
above and a π-calculus based model is how the graph, G, is represented. In the
latter, the graph is interpreted as a bunch of processes running concurrently,
one for each node in node(G), and the edges in edge(G) are interpreted as
communication channels, x, used between processes representing adjacent nodes
to communicate. Thus, each process interpreting a node is actually parametric
in the channels used to represent its incoming and outgoing edges.

6It doesn’t capture a notion of subdomain or of fail-together regions, or other semantics
commonly associated with distribution; but, those are more sophisticated notions that can be
built in terms of these primitives.

34

More formally, if A ∈ node(G), we’ll write π(A) for the π-calculus pro-
cess representing that node. Likewise, if E ∈ edge(G) with src(E) = A and
trgt(E) = B, we’ll write π(E) to represent the channel used by π(A) and π(B)
to communicate. The π-calculus representation of the entire graph, which we’ll
write π(G), can be expressed as a parallel composition of processes, that is

π(G) = ΠN∈node(G)π(N) (2.15)

Thus, if node(G) = {N1, . . . ,Nm}, then

π(G) = π(N1) ∣ . . . ∣ π(Nm)

Note that π(N) is actually parametric in the interpretations of the incoming
edges, π(inG(N)) and the the outgoing edges π(outG(N)); that is, the expres-
sion π(N) is more accurately written π(N)(π(inG(N)), π(outG(N))).

One of the most important features of this encoding is that it’s composi-
tional. That means that if the graph changes, for example if it grows to include
two Synereo networks, the encode handles this without needing to reinterpret
the new network from the ground up.

π(G +H) = π(G) ∣ π(H) (2.16)

In terms of software deployment, this means just adding in the processes that
interpret the nodes of the second Synereo network; that is, the maths match
the practice exactly.

The next difference is that the functions which are defined globally on the
graph can be defined in terms of protocols between the processes. These consti-
tute the behaviors of a node in the Synereo network. Each π(N) is really just
a π-calculus representation of the behaviors of a Synereo node.

We can, in fact, give a rigorous translation of the model of user behaviors
presented in the previous section into a π-calculus model. Given k, representing
a user behavior the translation into a π-calculus process is given by the equation

Definition 16 (π-node-agent) [[−]] ∶ KG ×Channel⇒ Proc

[[k]](d) = ∑
(r,a,es,k′)∈k(e)

trgt(e)?(e){d!(r) ∣ Πe′∈estrgt(e′)!(e′) ∣ [[k′]](d)} (2.17)

Here the channel d, the second parameter to the translation, represents the
place to send or record the response determined by k. This same technique
can be used for making the state available to the node process. Likewise, to
translate the behavior of the global network we simply put the translations of
each node behavior in parallel composition.

Definition 17 (π-network-agent)

[[GKG]] = ΠN∈node(G)[[GKG(N)]]

Theorem 1 (full abstraction) Let k1 and k2 be node behaviors k1 ≈ k2 ⇐⇒
[[k1]] ≈ [[k2]]

35

Proof sketch: The proof that this is a full and faithful translation is remarkably
straightforward. The intuition behind the translation and the proof of its cor-
rectness is that each event in the system is modeled as a communication step
in the π-calculus process modeling the (aggregate) node behavior(s).

As noted above, the users’s behavior, however, is actually only a part of
the behavior of a node operating on the user’s behalf. There are a number of
protocols working to support the user’s experience within Synereo. Let’s look
at a more detailed example, illustrating how Reo is calculated as a protocol
between two nodes.

Figure 2.4 shows a pingpong diagram of how such a protocol might work.

calculateReo(John, Bob)

hashedConnections(listOfCnxns)

hashedConnections(listOfCnxns)

calculateIntersection(
listOfCnxns)

calculateIntersectio
n(listOfCnxns)

intersectionRslt(listOfCnxns)

intersectionRslt(listOfCnxns)

calculateScore(list
OfCnxns)

publishContent([John], content, reo)

verifyReo(John,
reo)

publishContent([John, Bob], content, reo)

Figure 2.4: An example reo calculation protocol

Each vertical timeline, say Ti for 1 ≤ i ≤ 3, in the protocol corresponds to a π-
calculus process, π(Ti). Here’s the process encoding for the rightmost timeline,
T3.

π(T3)
=
xtrgt!(calculateReo(xtrgt, xsrc)) ∣ xtrgt!(hashedConnections(srcCnxns))
∣ WaitForHashedCnxns

(2.18)

36

WaitForHashedCnxns

=
xsrc?(hashedConnections(trgtCnxns)){
∣ xtrgt!(intersection(srcCommonCnxns))
∣ xsrc?(intersection(trgtCommonCnxns)){
Engagement

}
}

(2.19)

Note that in the diagram the calculation of engagement is effectively elided.
However, it is easily expanded as firing a bunch of queries to neighboring nodes
in parallel.

engagement

=
if(srcCommonCnxns == trgtCommonCnxns){
Πx∈bundle(src,trgt)xtrgt!(engagementReq(trgt, x))
∣ Πx∈bundle(src,trgt)xsrc?(engagementRsp(trgt, x))

}

(2.20)

Now, if D is the whole diagram, then π-calculus process interpreting D, or
π(D) is simply the parallel composition of the process interpreting each timeline.
That is,

π(D) = π(T1) ∣ π(T2) ∣ π(T3)

In section 2.3.1 we’ll see how to render the term in equations 2.18, 2.19, and
2.20 as a Scala program using the SpecialK DSL.

With this formulation we can close a gap in the more abstract, global pre-
sentation. In the network dynamics model we didn’t actually say how the nodes
in the graph actually made use of the Reo formula. We simply showed how the
Reo formula utilized the graph structure to reflect the attention and engagement
of the community. We didn’t show how that calculation then folded into the
behavior of the nodes in the graph. With the model above we can not only see
how the Reo formula can be calculated through only local communications, but
also see how it can be folded in to influence the subsequent behavior of Synereo
nodes.

Additionally, it is clear that repeatedly querying neighboring nodes for en-
gagement scores will be inefficient. There are obvious optimizations involving
caching such scores and invalidating the caches when connections get updated.
We can use this model to reason about such optimizations and prove their be-
haviors equivalent to the original specification. If the π-calculus did nothing
more than this, it would have paid its own freight. The fact is, however, that it
is the technology enabling a step by step refinement from an idealized vision of
how the Synereo network might work to functioning, correct code.

37

calculateReo(John, Bob)

hashedConnections(listOfCnxns
)

hashedConnections(listOfCnxns)

calculateIntersecti
on(listOfCnxns)

calculateIntersec
tion(listOfCnxns

)

intersectionRslt(listOfCnxns
)

intersectionRslt(listOfCnxns)

calculateScore(l
istOfCnxns)

publishContent([John], content,
reo)

verifyReo(John,
reo)

publishContent([John, Bob], content,
reo)

The value of a formal model

Reo calculation
protocol

Begin with existing formally verified models, just like
beginning with a codebase in a github repo

SLMC

model-checkers and
theorem provers

Spin

SPIM

simulators

runtime libraries

Async to Dev activity, check that
tweaks don't introduce attacks or error

Async to Dev activity, simulate protocol at Internet
scale to look for stress characteristics

Map specification directly to industrial language
bindings and libraries

An applied π-calculus
model of electronic voting

Tweak to make new protocols

Figure 2.5: New tools for distributed applications

38

2.2.8 The DendroNet

Notice that using this approach it is not necessary to use blockchain technology
for every aspect of distributed content sharing. In point of fact, that’s rarely
desirable. Blockchain is suited to distributed consensus. However, there need
be no consensus amongst Alice, Bob, and Carol for what Alice shares privately
with Carol. In the Synereo model, Reo, for example, is not a conserved quantity.
It’s calculated, not spent, and changes with the community’s engagement with
the behavior of its members. So, there is no need to use blockchain to manage
and maintain Reo. On the other hand, it is a property of a distributed network
and relies on communication amongst the nodes to be calculated as well as to
influence how content propagates throughout the network.

By contrast, AMPs are a conserved quantity. The distribution of AMPs
around the network is a matter of (distributed) consensus. Blockchain is a
perfect tool for maintaining the distributed AMP ledger. Synereo, therefore
uses a broader technology base, which we dub here the DendroNet, including a
distributed network for content sharing and a separate network for maintaining
the AMP ledger.

The DendroNet is the core component of Synereo which encompasses every
node’s awareness of its vicinity in the network, and where connected node meta-
data is stored. Through the DendroNet a node is able to make decisions about
and prioritize content coming in from neighbouring nodes. The DendroNet is
also used to store operational metadata of the network such as node attributes,
preferences and encryption keys.

Content model and security

The DendroNet, as opposed to previously discussed concepts, is implemented on
top of refinement of SpecialK/KVDB. SpecialK/KVDB enables pieces of con-
tent to live on the network regardless of whether the originating node is online
or not. Public content is posted using keys directly to the KVDB; recipient
processes querying at keys where content is not yet present are automatically
suspended until such time that the content is available at that key. When
content does land at the key, suspended recipient processes are awakened and
provided the content. In some sense, SpecialK/KVDB can be regarded as just
a fancy distributed hashtable (DHT) where the keys have internal structure al-
lowing for efficient search over an infinite key space. Despite an infinite keyspace
being large enough to enable strong security by obscurity, content saved to the
KVDB should be regarded as public-knowledge. Permission models that reflect
the Synereo-specific user model reside as a layer of permissions above this DHT,
articulating how the content model addresses notion like friends only, friends
of friends, etc.

When encrypting content on the DendroNet (as with any other similar en-
cryption scheme) there is a tradeoff between strong per-recipient encryption,
which naturally requires O(n) storage and bandwidth, and sharing keys between
recipients which is highly problematic in terms of authenticity and reliability.
The Synereo content model relies on several permission classes, that in turn
rely on a hybrid implementation of direct communication between nodes and
using strong encryption on the DendroNet as a semi-persistent storage for offline
nodes. We examine all the possible scenarios. Public content can be naturally

39

be saved on the DendroNet without any encryption. Private content (i.e. direct
messages between two nodes) will initially be delivered directly between the
nodes, unless the recipient is offline. In this case, the content will be encrypted
with the recipient node’s public key, and saved on the DendroNet at a location
where the node can later fetch it (give example). Thus the DendroNet is used
as ephemeral storage until the node comes back online.

Content that has limited distribution, such as friends only, will be dis-
tributed using per-content keys. A single encrypted version is saved on the
DendroNet, while peers are notified of the new content, and given the proper
single-use decryption key. Given a content length calculation, short content can
be directly delivered without the of using the DendroNet. In any case, short
content or decryption keys are delivered via the process model, which provides
proper assurances regarding offline delivery. As with any permission model,
regardless of being distributed or centralised, nodes acting in bad faith (for
example, sharing beyond intended audience) must be taken into account, and
discussion as such is more of a social problem rather than a technical one.

Conserved quantities, double spending, and the DendroNet

Figure 2.6: Interaction between content network and blockchain

Given that AMPs are a currency, i.e. a conserved quantity, with all that
entails, they will naturally reside on a standard blockchain that will run as
another tier of the Synereo network - or alternatively on an existing blockchain

40

network, depending on implementation. Wallet data per each node, including
public address and private keys, will be stored locally on the node, and not on
the distributed KVDB. This is in line with practically all wallet clients that do
not attempt to provide any secure means of online backup. It is the end user’s
responsibility to backup their wallet data, in case of node failure or theft.

Content exchanges where AMPs flow create transactional boundaries and
atomicity constraints. Synereo is chooses optimistic algorithsm and protocols
for content delivery where possible, but errs on the side of safety when it comes
to all transactions involving the flow of currency. For example, in the flow above,
content is delivered right away, but AMPs are not remitted until a read receipt
is delivered to the poster.

2.2.9 New tools for security, privacy, and information flow
policy

As noted above, blockchain technology only accounts for the maintenance and
security of the AMP ledger, but what about the distributed content sharing
mechanism? Being able to express who can see what and when is becoming a
considerable concern in today’s climate. [3] A quick look at the flow chart for
who can see a user’s post on Google+ [38] makes it clear both that people are
concerned about this for a variety of reasons, from self promotion, or commercial
advertising to a desire for privacy and and anonymity. It also makes it clear
that it is far from easy to write down and reason about information flow policy
in a distributed communication network.

One of the distinct advantages of the mobile process calculi, in general, and
the π-calculus in particular, is that they come equipped with a new kind of
logic, sometimes called Hennessy-Milner logic [39] [40] [41], [42] , that enables
specification and reasoning about information flow policy. In the same way that
the mobile process calculi provide new tools in the toolbox for reasoning about
security and privacy [43], these new logics provide new approaches to addressing
security and privacy in a distributed social network because they provide the
means to write down and reason about information flow policy.

In particular, the combination of process calculus and logic provide a much
better basis for a notion of smart contract. [44] To understand a little better how
these logics provide a fresh approach to privacy and security, information flow
policy and smart contracts in the distributed setting, let’s consider a practical
example.

Controlling information flow in mission critical situations

Consider a situation in which a doctor recently back from an aid mission to
Sierra Leone leaves a hospital in a densely populated city in the US after having
been erroneously cleared as ebola-free. The hospital discovers the mix up, and
the doctor is at large, potentially spreading a deadly disease around the city.

In such a situation the CDC may wish to ensure that healthcare providers
and city officials are notified before any member of the press is notified. How
would such a policy be expressed and enforced in a distributed communication
network like Synereo?

Here is a specification of (the relevant communications of) such a system,
together with a specification of the properties we want the system to hold, such

41

Figure 2.7: Who can see your G+ post?

42

as, eventually everybody gets the update, but the healthcare providers get it
first.

1 /* Emergency Update SYSTEM */

2

3 defproc EmergencyUpdate(healthlinkb ,healthlinke ,newslink ,info) =

4 healthlinks !(info).healthlinke ?(info).NewsUpdate(newslink ,info)

5

6 defproc HealthCareRing(link ,next) = link?(info).next!(info).

HealthCareRing(link ,next);

7 defproc NewsUpdate(newslink ,newschannel) = newslink ?(info).

NewsBroadcast(newschannel ,info)

8 defproc NewsBroadcast(newschannel) = newschannel !(info).

NewsBroadcast(newschannel ,info)

9

10 defproc System =

11 new secret in

12 new hlink1, hlink2, hlink3, hlink4 in

13 new newslink , newschannel in

14 (

15 EmergencyUpdate(hlink1,hlink4,newslink ,secret)

16 | HealthCareRing(hlink1,hlink2)

17 | HealthCareRing(hlink2,hlink3)

18 | HealthCareRing(hlink3,hlink4)

19 | NewsUpdate(newslink ,newschannel)

20);

21

22 /* PROPERTIES */

23

24 check System |= 5 and (<>4);

25

26 /***/

27

28 defprop everywhere(A) = (false || (1 => A));

29

30 defprop everybody_knows(secret) = everywhere(@secret);

31

32 defprop everybody_gets_to_know =

33 hidden secret.eventually everybody_knows(secret);

34

35 defprop no_news_before_health_update(newschannel ,healthlink) =

36 not(<newschannel ><healthlink >true)

37

38 check System |= everybody_gets_to_know;

39

40 /* ---------- */

Each defproc declaration is a declaration of information flow policy. It
is important to understand that each such policy statement can be provided
independently by the entity that offers and conforms to that policy. Thus, in
the example above, the CDC can offer its policy, the members of the health
care provider network can offer theirs and the news agency members can offer
theirs. The system is the composition of each such independently provided
policy statement. This forms the basis for a practical smart contract system
in a distributed system. There is no requirement for a global policy statement.
Rather each participating party says what their requirements and guarantees
are to participate in an engagement. Additionally, there is no requirement that
the contract be 2-party, they can be n-party contracts.

Another crucial aspect of this approach is that the composite policy state-
ment can be checked for properties, such as those described in the defprop

43

declarations above. Again, these properties could be provided independently.
Thus, in the example, the news agents can profer the property that everybody
eventually gets to know the update, which is in their interest and alignment
with their function as a service provider. Meanwhile, the CDC and health care
provider can insist no news updates until all the health care providers in the
network are alerted. This conforms with the CDC’s mandate and the health
care providers’ obligation to promote public safety. The composite policy (the
System declaration in the example above) can be automatically (i.e. mechani-
cally) checked for these properties independently or in a variety of conjunctions.

Perhaps the most crucial aspect of this approach is that policy statements
can be turned into system-level code. The relevant behavior is proc declarations
can be installed as a part of an emergency update automation for Synereo.
Thus, Synereo becomes a platform supporting an entirely new level of control
over information flow. Users, programmers, vendors can extend Synereo in new
and exciting ways while still providing an unprecedented level of visibility and
control over what those extensions mean for information flow and the attention
economy.

2.2.10 Comparison to other models

Synereo’s network model is not the only way to provide a mechanism for improv-
ing signal in a network of communicating entities. Alternatives abound. In the
field of biology, one of the best known models is so-called kinetic proofreading.

Kinetic proofreading

Review of kinetic proofreading The wikipedia article on kinetic proofread-
ing summarizes the model this way:

Kinetic proofreading (or kinetic amplification) is a mechanism for
error correction in biochemical reactions, proposed independently
by John Hopfield ... and Jacques Ninio Kinetic proofread-
ing allows enzymes to discriminate between two possible reaction
pathways leading to correct or incorrect products with an accuracy
higher than what one would predict based on the difference in the
activation energy between these two pathways. Increased specificity
is obtained by introducing an irreversible step exiting the pathway,
with reaction intermediates leading to incorrect products more likely
to prematurely exit the pathway than reaction intermediates leading
to the correct product. If the exit step is fast relative to the next
step in the pathway, the specificity can be increased by a factor of
up to the ratio between the two exit rate constants. (If the next
step is fast relative to the exit step, specificity will not be increased
because there will not be enough time for exit to occur.) This can
be repeated more than once to increase specificity further.

[45] [46]
Perhaps more colorfully, Mike Stay describes it this way.

In molecular biology, everything’s a hot mess. Molecules vibrate
wildly, stuff is churning around at random. How does a cell manage
to replicate DNA in such chaotic conditions?

44

Figure 2.8: An example reo calculation protocol

Part of the answer is a process called “kinetic proofreading.” Imag-
ine an art museum with a Rembrandt gallery, and suppose that fans
of Rembrandt will spend ten minutes in the gallery, while non-fans
will only spend seven. Suppose also that Rembrandt fans are rela-
tively rare, perhaps 10% of the visitors. If we allow people to walk
through the gallery at will, we’ll rarely get more than around 25%
of the people in the gallery to be fans.

However, suppose that the entrance to the gallery can be shut for a
time. If we shut it for eight minutes, then all the non-fans leave and
everyone in the gallery will be a Rembrandt fan.

Enzymes are chemicals that make reactions more likely to happen
but don’t get consumed in the reaction. Over a broad range, a higher
proportion of enzymes to other molecules means a lower activation
energy for the reaction. Kinetic proofreading is a process by which
the proportion of enzymes can be increased tremendously, just like
the proportion of Rembrandt fans in the gallery.

The cost of kinetic proofreading is the energy required to keep the
door shut. By opening and shutting a series of doors, a cell can use
a much smaller amount of energy to get desirable outcomes.

Social network interpretation How does this relate to social networks?
Here’s a way to think about the application of kinetic proofreading processes in
a social network. Consider a two stage kinetic proofreading process.

C +E⇔ CE → C∗E → C∗∗E → product +E

C∗E → C∗ +E

C∗∗E → C∗∗ +E

Think of E as a social network user. Think of C as content. Think of CE
as the content showing up in the user’s stream. Think of the fall-off reaction
CE → C +E as the user never paying attention to the content post. Think of
C∗E as the user liking the post. Think of the fall-off reaction C∗E → C∗ +E as
the user liking the content post but never resharing. Think of C∗∗ +E as the
user AMPlifying the content, compensating the content poster. Think of the

45

fall-off reaction C∗∗E → C∗∗ +E as the user liking and AMPlifying, but never
resharing. Finally, think of C∗∗E → product +E as the user resharing.

Under this interpretation we can see that the cost of applying attention
to content functions remarkably like a kinetic proofreading proofreading mecha-
nism, informing the underlying mechanism of information flow in social networks
and allowing them to improve signal fidelity. Specifically, when Facebook intro-
duced the “like” mechanism whereby users could take an action that effectively
marked attention deployed on a post, and thereby promote the post to a new
status, they were knowingly or otherwise employing a form of kinetic proofread-
ing to improve signal in the sense that content was more likely to flow to users
with those with preferences for that kind of content because of this promotion
mechanism and the cost of attending enough to click a button.

Again, though, why do we care about this interpretation? The interpretation
becomes relevant if we want to quantify how much the signal improves. In
particular, kinetic proofreading is really a recipe for turning energy into signal
fidelity, and by recipe we mean one with exact proportions. The stoichiometric
analysis provides a set of differential equations that when given the reaction rates
say exactly what the energy cost is for a given improvement in signal. Using
the social network interpretation kinetic proofreading provides a quantitative
model of an attention economy. As such, it stands as a competitor to the
Synereo model. That’s why we care.

Comparison As mentioned in section 2.2.6, we hope to publish quantitative
comparison results in a subsequent paper. More qualitatively, the question is,
does Synereo’s network model do anything to improve this basic mechanism?
The short answer is that Synereo includes each of the attention ratcheting mech-
anisms and amplifies them. However, it balances that with AMPs. This acts as
a kind of catalyst or enzyme working in the opposite direction to the natural
signal improvement.

2.3 Software Stack

As the market begins to recognize the necessity of distributed applications and
distributed platforms, it must simultaneously recognize that distributed appli-
cations, especially those that are also decentralized, are much harder to build.
It’s not just about the comms layer, or getting the bits from here to there. It’s
about having a conceptual apparatus for envisioning these kinds of applications
and reducing that vision to practice. In short, what’s needed is a programming
model. Much in the same way that they provide a formal model for reason-
ing about concurrent and distributed systems, the mobile process calculi also
provide such a programming model.

To be clear, we are not just talking about automated verification or simu-
lation. Certainly, there are tools for reasoning about protocols specified in the
applied π-calculus. One is called ProVerif [47]. Another such tool is the spatial
logic model checker [48]. Additionally, there are tools for taking π-calculus spec-
ifications and simulating them at scale. One such tool, which has been mostly
applied to reasoning about protocols (read signaling chains) in biological sys-
tems, is called SPIM [49]. However, there are a variety of runtime libraries and

46

programming
model

for(e <- chan?(cnxn)(pattern)) {
 handle(e)
}

chan!(cnxn)(pattern, data)

How programmers
and applications query for

One programming model covers
messaging, pub/sub, no-sql, distributed tx

and publish data

Figure 2.9: SpecialK programming model

programming
model

for(e <- chan?(cnxn)(pattern)) {
 handle(e)
}

chan!(cnxn)(pattern, data)

How programmers
and applications query for

and publish data

JVM

JVMqry

update

table

table

forward qry thru msging
when data not locally resident

Figure 2.10: SpecialK distributed programming model

47

virtual machines that implement an execution model for the π-calculus, these
include [50] and [51].

Of some interest here is SpecialK [52]. Like [50] and [51], SpecialK/KVDB
takes the idea of ProVerif a step further by treating the applied π-calculus as a
programming language. This allows designers and programmers alike to go from
high level specifications directly to code that runs in a distributed setting. Unlike
these other implementations, it does this by embedding a monadic DSL for the
applied π-calculus into Scala. The core of this monadic DSL treats a π-calculus
channel as if it were logically a persistent queue. Thus, where one would write
x?(y)P in the π-calculus, the equivalent expression in Scala extended with the
SpecialK/KVDB library would be for(y <- x){ P }; likewise, x !(y) is the
Scala transliteration of the π-calculus expression x!(y). Figure 2.10 shows an
elaboration of this scheme for the DendroNet model.

Further, because of its mapping of the π-calculus semantics onto local storage
and messaging layers, using the SpecialK/KVDB Scala library a programmer
can turn π-calculus expressions into Scala programs that execute in a dis-
tributed manner. SpecialK is the DSL while KVDB comprises the underlying
libraries and architecture that allow the distributed execution.

2.3.1 Example protocol implementation

The following code fragment encodes equations 2.18 and 2.19. A more complete
(but still undocumented) version can be found in github at [53].

1 trait ContentRecipientBehaviorT extends ProtocolBehaviorT with

Serializable {

2 ...

3 def receiveContent(

4 node: SynereoNode[PersistedKVDBNodeRequest ,

PersistedKVDBNodeResponse],

5 cnxns: Seq[PortableAgentCnxn]

6): Unit = {

7 cnxns match {

8 case recipientToSomebody :: _ => {

9 val agntRecipientCnxnsRdWr =

10 for(cnxn <- cnxns) yield {

11 (

12 acT.AgentCnxn(cnxn.src , cnxn.label , cnxn.trgt),

13 acT.AgentCnxn(cnxn.trgt , cnxn.label , cnxn.src)

14)

15 }

16

17 for((agntCnxn , _) <- agntRecipientCnxnsRdWr) {

18

19 reset {

20 for(ePublishWithReo <- node.subscribe(agntCnxn)(

PublishWithReo.toLabel)) {

21 rsrc2V[ReputationMessage](ePublishWithReo) match {

22 case Left(PublishWithReo(sidPC , cidPC , p2cPC ,

cntntPC , reoPC)) => {

23

24 val agntP2CPC = acT.AgentCnxn(p2cPC.src , p2cPC.

label , p2cPC.trgt)

25

26 val calulateReoRequest = CalculateReo(sidPC ,

cidPC , p2cPC)

27 node.publish(agntP2CPC)(

48

28 CalculateReo.toLabel(sidPC),

29 calulateReoRequest

30)

31 for(eHashedConnections <- node.subscribe(

agntCnxn)(HashedConnections.toLabel)) {

32 rsrc2V[ReputationMessage](eHashedConnections)

match

33 {

34 case Left(HashedConnections(sidPC , cidPC ,

seqOfCnxnsPC)) => {

35

36 val hashedConnections : Seq[

PortableAgentCnxn] =

provideHashedConnections ()

37 val hashedConnectionsData =

HashedConnections(sidPC , cidPC ,

hashedConnections)

38 node.publish(agntP2CPC)(

39 HashedConnections.toLabel(sidPC),

40 hashedConnectionsData

41)

42

43 val intersectionConnections : Seq[

PortableAgentCnxn] = hashedConnections

intersect seqOfCnxnsPC;

44 val intersectionConnectionsData =

IntersectionResult(sidPC , cidPC ,

intersectionConnections);

45 for(eIntersectionResult <- node.subscribe(

agntCnxn)(IntersectionResult.toLabel

)) {

46 rsrc2V[ReputationMessage](

eIntersectionResult) match

47 {

48 case Left(IntersectionResult(sidPC ,

cidPC , intersectCnxnsPC)) => {

49 node.publish(agntP2CPC)(

50 IntersectionResult.toLabel(sidPC)

,

51 intersectionConnectionsData

52)

53 val reoScore : Int = 1000; //

placeholder for actual

calculation

54 if (reoScore != reoPC) {

55 }

56 // reo is good , continue to publish

57 }

58 case Right(true) => {

59 ...

60 }

61 case _ => {

62 ...

63 }

64 }

65 }

66 }

67 case Right(true) => {

68 ...

69 }

70 case _ => {

71 ...

49

Figure 2.11: SpecialK/KVDB deployment

72 }

73 }

74 }

75 }

76 case Right(true) => {

77 ...

78 }

79 case _ => {

80 ...

81 }

82 }

83 }

84 }

85 }

86 }

87 case _ => {

88 throw new Exception("at least one cnxn expected : " +

cnxns)

89 }

90 }

91 }

92 }

50

2.3.2 Deployment

Deployment of a Synereo node currently requires three core dependencies: JVM,
MongoDB and RabbitMQ. However, there are plans for reducing all the Synereo
deliverables to a single binary, with all the dependencies running in-process.
Regardless of in-proc or external dependencies, Synereo will be delivered fully
packaged, targeting Linux platforms initially (for all major distributions), with
OS X and Windows platforms following suit. Any required services will be
launched from the respective init system (e.g. systemd for Linux, plist for
OS X, Windows services), thus requiring very little interaction from the user.
Later releases targeting a general availability audience will have a matching user
interface that simplifies usage for non-technical users, and does not require any
command line knowledge. Synereo does not target full deployment on mobile
clients at this phase, but will enable usage through centralised gateway service
(see section 2.5.1).

2.3.3 Security

Synereo’s security and privacy design is based on using tested and proven meth-
ods. New cryptography primitives or protocols are out of scope for Synereo,
as they are notoriously hard to implement correctly, nor does Synereo actually
require any new tools beyond the currently available methods that are known
to be time-tested and battle-proven.

Messages in transit between Synereo nodes are encrypted using RabbitMQ’s
builtin SSL capabilities [54]. (A possible switch to ZeroMQ as core transport
for Synereo messages will require an additional dependency for securing mes-
sages, as it does not have native SSL/TLS support. In this case, libNaCL [?] is
a strong candidate for enabling secure messaging between nodes. Incidentally,
libNaCL is used by CurveZMQ, the builtin protocol used for ZMQ authentica-
tion and encryption.) Keys are exchanged opportunistically between nodes, and
no certificate authority is used to verify certificate authenticity. This is due to
the centralised nature of a CA, which goes against Synereo’s vision for a com-
pletely decentralised network. Of course, the lack of certification authentication
is ripe for man-in-the-middle (MITM) attacks. Generally speaking, secure com-
munication between two peers without prior agreement on a shared secret is a
hard problem that is pervasive across many applications. Some techniques can
be used to reduce the attack surface of Synereo nodes, such as pinning known
certificates for each node in a local cache, and raising errors on any fingerprint
anomaly, similar to the behaviour used, for example, in the OpenSSH imple-
mentations. Security-aware users can also make a habit of confirming node
fingerprints upon first contact through an existing trusted channel. Later iter-
ations might bring more attention to securing messages in transit in stronger
ways that have more favourable trade-offs for the Synereo network.

2.4 Censorship Resilience

As with any new technology that challenges existing structures of power and
profit, there must be some expectation for resistance and plans must be made

51

accordingly. To that end, we review the resilience of existing peer-to-peer tech-
nologies to censorship attempts, and discuss Synereo’s plans in this regard.

It is well known that where there is censorship, there first is surveillance.
Dragnet surveillance of internet traffic - as we have come to learn through recent
revelations by Edward Snowden and other courageous whistleblowers - generally
classifies traffic roughly by type, and considers most P2P traffic - that is not
otherwise targeted for selection - to be “high-volume, low-quality” [55]. Gen-
erally speaking, a passive adversary who is interested in conducting censorship
operations, and has access to internet routing equipment (such as ISPs, law
enforcement authorities, governments and spy agencies) can easily distinguish
between different types of internet traffic, even if data is encrypted, by looking
at patterns of < SrcIP,SrcPort,DestIP,DestPort,Data > and making some
intelligent guesses. P2P traffic, as well, can be analyzed in such a way. Thus,
the first question is if Synereo traffic patterns can blend in with other P2P traf-
fic, effectively making it very convenient to hide Synereo content in swathes of
otherwise innocuous data. While not an insignificant effort, initial work to make
Synereo more resilient to censorship will likely start with this target in mind.
Additional efforts to conceal Synereo traffic can follow the path set by so-called
“Pluggable Transports” which are used by the Tor network [56] to obfuscate Tor
protocol traffic as a multitude of combinations of target protocols and providers
such as SSL/TLS, Skype, Google and CloudFlare.

A persistent adversary that is interested in blocking Synereo at all costs will
then have to consider blocking large portions of internet traffic, and deal with
the political consequences of such an action. Wireless mesh networks to the
rescue!

Wireless mesh networks - such as Freifunk (Germany), FunkFeuer (Austria),
AWMN (Athens) and Guifi (Catalonia) - are community-based efforts to create
an internet backbone based on off-the-shelf consumer wireless equipment. These
networks are able to serve large geographical areas, spanning neighbourhoods,
cities and even large metropolitan areas, and provide not only a shared uplink
to the Internet, but can also serve as a self-sustained network serving the com-
munity in case no uplink exists, or in case of a crisis. Given a large enough user
base in such an ad-hoc network, future work on Synereo will attempt to enable
self-sustained deployment of isolated Synereo networks on such networks, effec-
tively creating not one, but many Synereo networks that later able to merge
back into the rest of the network once the political situation is more favourable.

2.5 Services

2.5.1 Gateway services

As part of the deployment of the Synereo network, we plan on enabling the
setup of centralised Synereo gateways. Of course, while this is not the main fo-
cus of the Synereo network, we aim to provide an easy way for users with limited
ability to deploy their own Synereo nodes, to use the network regardless. This
is achieved through centralised services that will provide the necessary technical
resources to enable end users to use Synereo as a simple web service, and access
it with nothing more than a standard web browser.

52

Implementing centralised gateways requires multi-tenancy capabilities from
the Synereo binaries, such that properties of security and anonymity are fulfilled
to a strong enough degree. Multi-tenant deployments can be implemented over
many architectures, and discussion of those options will be deferred to a later
paper, as it becomes more relevant to the Synereo roadmap.

2.5.2 Third party services

As hinted throughout this paper, Synereo does not reside in a vacuum, and
will rely on several surrounding technologies. The AMP ledger will be managed
on a standard blockchain technology, either on a native Synereo blockchain to
be deployed side-by-side next to the Synereo stack, or otherwise dependent on
a third party service that enables quick and fast transactions on an existing
blockchain. The Synereo ecosystem is based on many micro-transactions repre-
senting values of reputation and charge and thus has specific requirements from
a highly performant ledger that carries minimal per-transaction overhead. To
name an example, Factom [57] is a service which plans on delivering just that,
and is a likely candidate for integration with the Synereo AMP ledger.

Another service that will possibly be integrated into the Synereo network is
MaidSafe [58], which - amongst other offerings - provides a distributed content
store solution. Synereo might rely on such a service to act as a so-called dis-
tributed content delivery network (CDN) where static objects are to be served
from neighbouring nodes.

2.6 Conclusion

The reader who has made it this far is either a sly person who skipped to the end
or someone whose attention is unlikely to be hacked and whose mind is spacious
enough to hold onto the forest and the trees. Either way, congratulations! You
made it here all in one piece. We’ve tried to make it clear that we’re with
you all the way. We know that social interaction over, around, and through
the Internet has an enormous potential that we’ve only just begun to explore.
We know that tapping into that potential means helping you, both the sly and
spacious, and everyone in between, benefit from how you deploy your attention;
and, more importantly, tappng into that potential means providing you a means
to help your whole community benefit from a coherent, focused deployment of
the collective attention. Quite simply, given the problems facing us at this point
in time on planet Earth, we need a different quality of engagement if we are to
make it through.

As we promised at the end of 1, this isn’t a manifesto. We didn’t lay out
these lofty goals and then not tell you how we plan to get there. Instead,
we’ve done our level best to provide a model for tapping into the collective
attention and a map from that model onto a real distributed architecture with
an actual programming model that has a solid mathematical foundation. (In
fact we even provide not one, but two different ways to analyze the model,
and compared it to possible competing models.) Needless to say, it’s a big
undertaking; but, we think it’s unquestionably a worthwhile undertaking with a
very sound underpinning that provides the basis for a step-by-step realization.

53

In point of fact, as biological models like kinetic proofreading make clear, a
distributed approach to self-organization isn’t a revolution. It’s a time honored
approach to evolution; and that’s what this really is: an invitation to join the
evolution.

54

Bibliography

[1] Adam D. I. Kramer, Jamie E. Guillory, and Jeffrey T. Hancock.
Experimental evidence of massive-scale emotional contagion through
social networks. Proceedings of the National Academy of Sciences,
111(24):8788–8790, 2014.

[2] Peter Nguyen. Social media privacy policy loopholes you need to know
about. http://blog.hotspotshield.com/2013/06/25/
social-media-privacy-concerns/, 2013.

[3] James Bamford. Edward snowden: The untold story. Wired, 2014.

[4] Statista. Number of social network users worldwide from 2010 to 2018 (in
billions). http://www.statista.com/statistics/278414/number-of-
worldwide-social-network-users/.

[5] InternetLiveStats. Internet users in the world.
http://www.internetlivestats.com/watch/internet-users/.

[6] Dan Noyes. The top 20 valuable facebook statistics.
https://zephoria.com/social-media/top-15-valuable-facebook-statistics/.

[7] Leo Mirani. Millions of facebook users have no idea they’re using the
internet. http://qz.com/333313/milliions-of-facebook-users-have-no-idea-
theyre-using-the-internet/.

[8] Inc Facebook. Facebook reports fourth quarter and full year 2014 results.
http://investor.fb.com/releasedetail.cfm?ReleaseID=893395.

[9] Inc Twitter. Twitter reports fourth quarter and fiscal year 2014 results.
https://investor.twitterinc.com/releasedetail.cfm?releaseid=894844.

[10] Gideon Rosenblatt. Your second job, as a facebook user.
http://www.the-vital-edge.com/facebook-users/.

[11] Adrian Covert. Facebook buys whatsapp for 19 billion usd.
http://money.cnn.com/2014/02/19/technology/social/facebook-
whatsapp/index.html?iid=EL.

[12] Statista. Value per active user of selected social networks as of february
2014, based on market cap or acquisition price (in u.s. dollars).
http://www.statista.com/statistics/289505/social-networks-value-per-
active-user/.

55

http://blog.hotspotshield.com/2013/06/25/social-media-privacy-concerns/
http://blog.hotspotshield.com/2013/06/25/social-media-privacy-concerns/

[13] Reed Albergotti. Furor erupts over facebook’s experiment on users.
http://www.wsj.com/articles/furor-erupts-over-facebook-experiment-on-
users-1404085840.

[14] Facebook community question. How does facebook track my recent
non-facebook web-browsing.
https://www.facebook.com/help/community/question/?id=10151697384894188.

[15] Harrison Weber. How the nsa and fbi made facebook the perfect mass
surveillance tool. http://venturebeat.com/2014/05/15/how-the-nsa-fbi-
made-facebook-the-perfect-mass-surveillance-tool/.

[16] Paul Boutin. Anti-facebook project rockets to 120,000 usd in online
donations. http://venturebeat.com/2010/05/13/anti-facebook-project-
rockets-past-120000-in-funding/.

[17] Steven Tweedie. Ello raises 5.5 usd million for its invite-only, ad-free
social network. http://www.businessinsider.com/ello-raises-55-million-for-
its-social-network-2014-10.

[18] R.A. Lanham. The economics of attention: Style and substance in the age
of information. Univerity of Chicago Press, 2006.

[19] T. Terranova. Attention, economy and the brain. Culture Machine,
13:1–19, 2012.

[20] Wayne Wu. Attention as action for selection. Attention: Philosophical
and psychological essays, pages 97–116, 2011.

[21] Wayne Wu. Attention. Routledge, London, UK, 2014.

[22] H.A. Simon. Designing organizations for an information-rich world. In
M. Greenberger, editor, Computers, communications, and the public
interest, pages 37–72. The Johns Hopkins Press, 1971.

[23] R. Mortier, H. Haddadi, T. Henderson, D. McAuley, and J. Crowcroft.
Human-data interaction: The human face of the data-driven society.
Social Science Research Network Working Paper Series, 2014.

[24] A. Sen. Well-being, agency and freedom: the dewey lectures 1984. The
Journal of Philosophy, pages 169–221, 1985.

[25] David Foster Wallace. Some thoughts, delivered on a significant occasion,
about living a compassionate life. In This is water. Little, Brown and
Company, 2014.

[26] Ian Bogost. Cow clicker: The making of obsession.
http://bogost.com/writing/blog/cow_clicker_1, 2010.

[27] J. Blow. Video games and the human condition. CS Colloquium: Rice
University, 2010.

[28] M. Soroush, M. Hancock, and V.K. Bohns. Self-control in casual games.
In Proceedings of the IEEE Games, Entertainment, and Media (GEM)
Conference 2014, 2014.

56

http://bogost.com/writing/blog/cow_clicker_1

[29] D. Estrada and J. Lawhead. Gaming the attention economy. In Handbook
of Human Computation, pages 961–978. Springer, New York, NY, 2013.

[30] Bateson. ???????? ???????, 2014.

[31] Paul Adams. Why cards are the future of the web.
http://blog.intercom.io/why-cards-are-the-future-of-the-web/.

[32] Carl Hewitt. Actor model for discretionary, adaptive concurrency. CoRR,
abs/1008.1459, 2010.

[33] Vincent Danos, Josée Desharnais, and Prakash Panangaden. Labelled
markov processes: Stronger and faster approximations. Electr. Notes
Theor. Comput. Sci., 87:157–203, 2004.

[34] Silvano Dal Zilio. Mobile processes: A commented bibliography. Lecture
Notes in Computer Science, 2067:206–??, 2001.

[35] Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and
Semantics, volume 103 of Studies in Logic and the Foundations of
Mathematics. North-Holland, 1984.

[36] Cédric Fournet and Mart́ın Abadi. Hiding names: Private authentication
in the applied pi calculus. In Mitsuhiro Okada, Benjamin C. Pierce,
Andre Scedrov, Hideyuki Tokuda, and Akinori Yonezawa, editors,
Software Security – Theories and Systems, Mext-NSF-JSPS International
Symposium, ISSS 2002, Tokyo, Japan, November 8-10, 2002, Revised
Papers, volume 2609 of Lecture Notes in Computer Science, pages
317–338. Springer, 2002.

[37] Steve Kremer and Mark Ryan. Analysis of an electronic voting protocol
in the applied pi calculus. In Shmuel Sagiv, editor, Programming
Languages and Systems, 14th European Symposium on
Programming,ESOP 2005, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3444 of Lecture
Notes in Computer Science, pages 186–200. Springer, 2005.

[38] Lee Swagerty. Will a user see my google+ post?
http://ansonalex.com/tutorials/

will-a-user-see-my-post-on-google-plus-google-flowchart/,
2011.

[39] Marco Bernardo and Stefania Botta. A survey of modal logics
characterising behavioural equivalences for non-deterministic and
stochastic systems. Mathematical. Structures in Comp. Sci., 18(1):29–55,
February 2008.

[40] A. Ponse and Scott A. Smolka, editors. Handbook of Process Algebra.
Elsevier Science Inc., New York, NY, USA, 2001.

[41] L. Gregory Meredith and Matthias Radestock. Namespace logic: A logic
for a reflective higher-order calculus. In TGC [59], pages 353–369.

57

http://blog.intercom.io/why-cards-are-the-future-of-the-web/
http://ansonalex.com/tutorials/will-a-user-see-my-post-on-google-plus-google-flowchart/
http://ansonalex.com/tutorials/will-a-user-see-my-post-on-google-plus-google-flowchart/

[42] Lúıs Caires. Behavioral and spatial observations in a logic for the
pi-calculus. In FoSSaCS, pages 72–89, 2004.

[43] Martin Abadi and Andrew D. Gordon. A calculus for cryptographic
protocols: The spi calculus. In 4th ACM Conference on Computer and
Communications Security, pages 36–47. ACM Press, 1997.

[44] Greg Meredith and Steve Bjorg. Contracts and types. Commun. ACM,
46(10):41–47, 2003.

[45] Wikipedia. Kinetic proofreading — Wikipedia, the free encyclopedia,
2014. [Online; accessed 23-May-2014].

[46] JJ Hopfield. Kinetic proofreading: a new mechanism for reducing errors
in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci.
U.S.A., 71 (10):4135–9, 1974.

[47] Bruno Blanchet. Proverif. http://proverif.rocq.inria.fr/. Online
prover.

[48] Luis Caires. Spatial logic model checker.
http://ctp.di.fct.unl.pt/SLMC/. webpage.

[49] Andrew Phillips. Spim.
http://research.microsoft.com/en-us/projects/spim/. webpage.

[50] Benjamin C. Pierce and David N. Turner. Pict: A programming language
based on the pi-calculus. In Gordon Plotkin, Colin Stirling, and Mads
Tofte, editors, Proof, Language and Interaction: Essays in Honour of
Robin Milner, pages 455–494. MIT Press, 2000.

[51] Louis Mandel and Luc Maranget. Programming in JoCaml — Extended
Version. Research Report RR-6261, INRIA, 2007.

[52] Lucius G. Meredith. Specialk scala library.
https://github.com/synereo/special-k. Launched April 2013.

[53] Yuval Adam Lucius G. Meredith. Sample reo calculation protocol.
https://github.com/synereo/agent-service-ati-ia/tree/master/

AgentServices-Store/src/main/scala/com/protegra_ati/

agentservices/protocols/reputation. Written Fall 2014.

[54] Rabbitmq configuration. https://www.rabbitmq.com/configure.html.

[55] Ewen MacAskill et. al. Gchq taps fibre-optic cables for secret access to
world’s communications. http://www.theguardian.com/uk/2013/jun/
21/gchq-cables-secret-world-communications-nsa, 2013.

[56] The Tor Project. Tor: Pluggable transports.
https://www.torproject.org/docs/pluggable-transports.html.en,
2015. [Online; accessed 21-Jan-2015].

[57] Paul Snow, Brian Deery, Jack Lu, David Johnston, and Peter Kirby.
Business processes secured by immutable audit trails on the blockchain.
https://github.com/FactomProject/FactomDocs/blob/master/

Factom_Whitepaper.pdf?raw=true, 2014.

58

http://proverif.rocq.inria.fr/
http://ctp.di.fct.unl.pt/SLMC/
http://research.microsoft.com/en-us/projects/spim/
https://github.com/synereo/special-k
https://github.com/synereo/agent-service-ati-ia/tree/master/AgentServices-Store/src/main/scala/com/protegra_ati/agentservices/protocols/reputation
https://github.com/synereo/agent-service-ati-ia/tree/master/AgentServices-Store/src/main/scala/com/protegra_ati/agentservices/protocols/reputation
https://github.com/synereo/agent-service-ati-ia/tree/master/AgentServices-Store/src/main/scala/com/protegra_ati/agentservices/protocols/reputation
https://www.rabbitmq.com/configure.html
http://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa
http://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa
https://www.torproject.org/docs/pluggable-transports.html.en
https://github.com/FactomProject/FactomDocs/blob/master/Factom_Whitepaper.pdf?raw=true
https://github.com/FactomProject/FactomDocs/blob/master/Factom_Whitepaper.pdf?raw=true

[58] Tonglin Li, Xiaobing Zhou, Kevin Br, Dongfang Zhao, Ke Wang, Anupam
Rajendran, Zhao Zhang, and Ioan Raicu. Zht: A light-weight reliable
persistent dynamic scalable zero-hop distributed hash table. In In
Proceedings of the 27th IEEE International Parallel and Distributed
Processing Symposium (IPDPS, 2013.

[59] L. Gregory Meredith and Matthias Radestock. A reflective higher-order
calculus. Electr. Notes Theor. Comput. Sci., 141(5):49–67, 2005.

[60] Martin Odersky. Polarized name passing. In P. S. Thiagarajan, editor,
FSTTCS, volume 1026 of Lecture Notes in Computer Science, pages
324–337. Springer, 1995.

[61] Matej Kos̆́ık. A Contribution to Techniques for Building Dependable
Operating Systems. PhD thesis, Slovak University of Technology in
Bratislava, May 2011.

[62] Robin Milner. The polyadic π-calculus: A tutorial. Logic and Algebra of
Specification, Springer-Verlag, 1993.

2.7 Appendix A: A brief introduction to the π-
calculus

In this appendix we present a reflective version of the π-calculus. We choose
this version primarily because – although it has more features – it’s actually
simpler to present. It’s a smaller calculus, with fewer moving parts; and, there
is a full and faithful translation of the plain vanilla π-calculus into this version.
Before giving the formal presentation of the calculus, we begin with an example
that illustrates a design pattern used over and over in software design and
implementation: a mutable single-place cell for storing and retrieving state.

1 def Cell(slot, state)⇒ {

2 new (v) {

3 v!(state)
4 match {

5 slot?get(ret)⇒ {

6 v?(s)⇒ ret!(s)
7 Cell(slot, s)
8 }

9 slot?set(s)⇒ { Cell(slot, s) }

10 }

11 }

12 }

We read this as saying that a Cell is parametric in some (initial) state and
a slot for accessing and mutating the cell’s state. A Cell allocates a private
channel v where it makes the initially supplied state available to its internal
computations. If on the channel slot it receives a get message containing a
channel ret indicating where to send the state of the cell, it accesses the private
channel v and sends the value it received on to the ret channel; then it resumes
behaving as a Cell. Alternatively, if it receives a set message containing some
new state s, it simply continues as a Cell instantiated with accessor slot and
state s.

59

Zooming out a bit we can write down a recursive description of all legal
rho-calculus programs.

• the io-bound processes (M or N)

– 0 represents the stopped or inert process

– if P is a process, then x?(y1, . . . , yN) ⇒ P represents an input-
guarded process, or a process that is blocked waiting for input on
channel, x, before becoming P ; note that the input will be a tuple of
channels (y1, . . . , yN)

– if Q1, . . . ,QN are processes, then x!(Q1, . . . ,QN) represents a process
that is asynchronously sending as output a tuple of the code for
processes (Q1, . . . ,QN)

– if M and N are io-bound processes, then M+N represents a process
that makes a non-deterministic choice between becoming the process
M or the process N

• general processes (P or Q)

– every io-bound process M is a general process

– if P and Q are processes, then P |Q represents the process in which
P and Q are running concurrently

– if x is the code for a process, then ∗x represents the process created
by executing that code

• channels such as x are identified with the code for a process @P

The rho-calculus

The rho-calculus [59] is a variant of the asynchronous polyadic π-calculus.
When names are polarized [60], the π-calculus is an ocap language. Pierce and
Turner [50] defined the programming language Pict as sugar over the polarized
π-calculus together with some supporting libraries; unfortunately, the author-
ity provided by the libraries violated the principle of least authority. Kos̆́ık
refactored the libraries to create Tamed Pict, recovering an ocap language, then
used it to write a defensively consistent operating system [61]. The rho-calculus
differs from the π-calculus in that names are quoted processes rather than gen-
erated by the ν operator. Both freshness and polarization are provided through
the use of namespaces at the type level.

We let P,Q,R range over processes and x, y, z range over names, and x⃗ for
sequences of names, ∣x⃗∣ for the length of x⃗, and {y⃗/x⃗} as partial maps from names
to names that may be uniquely extended to maps from processes to processes
[59].

60

M,N ∶∶= 0 stopped process
∣ x?(y1, . . . , yN)⇒ P input
∣ x!(Q1, . . . ,QN) output
∣M+N choice

P,Q ∶∶=M include IO processes
∣ P |Q parallel
∣ ∗x dereference

x, y ∶∶=@P reference

The examples from the previous section use mild (and entirely standard)
syntactic sugar: def making recursive definitions a little more convenient than
their higher-order encodings, new making fresh channel allocation a little more
convenient and match for purely input-guarded choice. Additionally, the exam-
ples use {}-enclosed blocks together with line breaks, rather than | for parallel
composition. Thus the expression v!(state) is actually a thread running in par-
allel with the match expression in the Cell definition. The principal difference
between this and the applied π-calculus is replacing the tuples of names in
guarded input terms x?(y1, . . . , yN)⇒ P with Prolog terms. This is quite stan-
dard and presents no real technical difficulties. The interested reader is directed
to [62], [36], and [59] for details.

2.7.1 Free and bound names

The syntax has been chosen so that a binding occurrence of a name is sandwiched
between round braces, (⋅). Thus, the calculation of the free names of a process,
P , denoted FN (P) is given recursively by

FN (0) ∶= ∅
FN (x?(y1, . . . , yN)⇒ P) ∶=

{x} ∪ (FN (P) ∖ {y1, . . . yN})
FN (x!(Q1, . . . ,QN)) ∶= {x} ∪⋃FN (Qi)
FN (P |Q) ∶= FN (P) ∪FN (Q)
FN (∗x) x ∶= {x}

An occurrence of x in a process P is bound if it is not free. The set of names
occurring in a process (bound or free) is denoted by N (P).

2.7.2 Structural congruence

The structural congruence of processes, noted ≡, is the least congruence contain-
ing α-equivalence, ≡α, that satisfies the following laws:

P | 0 ≡ P ≡ 0 | P

P |Q ≡ Q | P

(P |Q) |R ≡ P | (Q |R)

61

Name equivalence As discussed in [41] the calculus uses an equality, ≡N , pro-
nounced name-equivalence, recursively related to α-equivalence and structural
equivalence, to judge when two names are equivalent, when deciding synchro-
nization and substitution.

2.7.3 Semantic substitution

The engine of computation in this calculus is the interaction between synchro-
nization and a form of substitution, called semantic substitution. Semantic
substitution differs from ordinary syntactic substitution in its application to a
dropped name. For more details see [59]

(∗x) ̂{@Q/@P} ∶= { Q x ≡N @P
∗x otherwise

Finally equipped with these standard features we can present the dynamics
of the calculus.

2.7.4 Operational Semantics

The reduction rules for rho-calculus are

x0 ≡N x1, ∣y⃗∣ = ∣Q⃗∣
x0?(y⃗)⇒ P | x1!(Q⃗)→ P{@Q⃗/y⃗}

(Comm)

In addition, we have the following context rules:

P → P ′

P |Q→ P ′ |Q
(Par)

P ≡ P ′ P ′ → Q′ Q′ ≡Q
P → Q

(Equiv)

The context rules are entirely standard and we do not say much about them
here. The communication rule makes it possible for agents to synchronize at
name-equivalent guards and communicate processes packaged as names. Here
is a simple example of the use of synchronization, reduction and quasiquote:
x(z) ⇒ w!(y!(∗z)) | x!(P) → w!(y!(P)). The input-guarded process, x(z) ⇒
w!(y!(∗z)), waits to receive the code of P from the output-guarded data, x!(P),
and then reduces to a new process the body of which is rewritten to include P ,
w!(y!(P)).

2.7.5 The π-calculus to Scala in 1 page

For the developer the relationship of π-calculus to executable semantics is even
simpler. Here’s a translation of the plain vanilla π-calculus to Scala in 1 page.

This, plus delimited continuations, a little prolog-based pattern matching,
and a mapping of that to datalog constitute the basis of SpecialK/KVDB’s
implementation of the applied π-calculus.

62

Figure 2.12: π-calculus to Scala in 1 page

63

	Prologue: This is not a manifesto
	Synereo: Design
	Introduction
	Background
	The opportunity

	Synereo: Design goals
	Core concepts: Reo, engagement, and AMPs, oh my!
	User experience
	User interface
	Other applications

	Synereo: network model and user interactions
	Overview
	Synereo high-level overview
	Outline of the chapter

	A dynamics for social agency
	Network Model
	How Reo and AMPs get used in Synereo
	Charge and current
	Intention and impact
	Network dynamics theorems
	Simulating the network dynamics
	A decentralized version of the network model
	The DendroNet
	New tools for security, privacy, and information flow policy
	Comparison to other models

	Software Stack
	Example protocol implementation
	Deployment
	Security

	Censorship Resilience
	Services
	Gateway services
	Third party services

	Conclusion
	Appendix A: A brief introduction to the -calculus
	Free and bound names
	Structural congruence
	Semantic substitution
	Operational Semantics
	The -calculus to Scala in 1 page

