Security of the MaidSafe Vault Network

Greig Paul, University of Strathclyde, Fraser Hutchison, MaidSafe.net, James Irvine, University of Strathclyde

Abstract—The MaidSafe network is an open-source, decen-
tralised, autonomous network for data storage and retrieval by
end user applications. All data is stored on the network within
vaults, which are member nodes of a self-managed network
resembling a distributed hash table (DHT). We explore the design
of the vault network, including the self-managing nature of both
vaults and data, and attack vectors worth consideration and
further research.

I. INTRODUCTION

HE MaidSafe network aims to provide a decentralised, au-

tonomous network for the secure storage and retrieval of
user data. Within this network, there are no centrally operated
servers - instead, users provide storage capacity to the network
via vaults, which are ordinary computers making available
their resources to the network. This network of vaults builds
upon the fundamentals of the Sigmoid distributed network
concept [1], and presents itself as a distributed network of
independent network nodes, each capable of storing data in
key-value pairs, as a distributed hash table (DHT). Like in a
DHT, each vault has its own unique address, which is derived
from a cryptographic hash, ensuring vaults are spread evenly
throughout the available address space.

Within the network, we shall use the term node to refer
generically to any client or vault which is participating in
the network, on behalf of a user. It is possible for a user
to have no clients, no vaults, or any combination of clients
and vaults, and these need not necessarily be on the same
computer, or local network. We shall consider a client to
be running software which implements the MaidSafe API,
capable of making requests to the network on behalf of the
user, for the purposes of storing, retrieving, or mutating data
(where permitted). We shall consider a vault to have long-
term storage (such as hard disks), as well as running the vault
software. Vaults on the network store the chunks provided by
clients, and return them when they are requested. Vaults on the
network also serve an important role as supervisor nodes (only
vaults are used when selecting the nearest 4 neighbours for the
purposes of management, since clients are likely to go online
and offline regularly, in the course of using the network).

Each vault on the network is managed by its 4 nearest
neighbour vaults, with proximity determined by node address
rather than geographical location. As the node address is
derived from a cryptographic hash, it is not practical to select
the nodes managed by any given node on the network. As
nodes join and leave the network, the managers of a particular
node will change if a nearer neighbour joins the network.

A vault’s nearest neighbours can be identified through a
simple bitwise XOR function, based upon the vault addresses
(hashes) - for any given node address, there can logically be
no other network node at the same distance as any other node

(as the numerical significance of each bit is considered in the
distance calculation). The ability to determine if two nodes are
nearest neighbours is provided by the DHT, and ensures the
resulting network can accurately determine if a given node is,
as it claims, the nearest neighbour of another node.

II. NETWORK OVERVIEW

The network’s DHT is used to locate and store a multitude
of different types of data within the MaidSafe network - for
the purposes of simplicity, we shall refer to a node as being
located at a given address in the table - nodes join the network
with identifiers obtained by hashing a randomly generated
keypair, and storing their identity data within this location on
the network. When locations in the network are used, such
as those of proximity or location, these locations are logical -
two logically adjacent nodes (by address), have no increased
probability of being geographically close. As a result, on
average across the network, each node’s nearest neighbours
should be uniformly selected from the network. To prevent an
attacker from carrying out an offline attack (i.e. using brute
force techniques to generate a keypair which will hash to a
desired location in the network), the actual address used is
influenced by contributions from neighbouring nodes at the
point of connecting to the network.

III. VAULT OVERVIEW

As with all peer-to-peer storage networks, the long-term
health and sustainability of the network is dependent upon
users contributing resources, rather than simply freeloading,
as discussed in [2] (within the context of peer to peer file
sharing networks). Each data chunk is replicated to 4 separate
locations on the network, in order to provide geographical
redundancy, as well as to allow for vaults going offline to
undergo maintenance, or in the event of network outages.
While this means that each chunk uses a total of 4 times
its capacity to be stored on the network, the network-level
deduplication achieved through convergent encryption offsets
this. Given that 75% of user data is believed to be non-unique
[3], where two or more users hold the same file, the overhead
of replicating the data on the network is quickly balanced by
the deduplication of user data.

In order for the network to be sustainable, it is expected
that each user contributes to the network by providing at least
one vault. It is possible for the user to delegate this task (for
example, by paying someone else to provide resources on their
behalf), or carry this out by themself (by running vault software
on their own computers or servers). By offering storage space
to the network, a user is entitled to store data on the network,
through clients they may run.



IV. NETWORK ARCHITECTURE

Every node on the network is managed by 4 vaults, in a con-
stantly overlapping supervision scheme, such that every node
is under the management of a group of its peers. To ensure
there is a motivation to follow the rules of the network, each
node is assigned a reputation by the remainder of the network.
The 4 managers of a node are responsible for ensuring that the
node under their supervision follows the network rules. In the
event of a node acting maliciously (or otherwise in accordance
with the rules of the network), this is reported to the rest of
the network, who can verify this if required. For example, if
a node which stored a given data chunk has lost the chunk,
or has corrupted it, this can be verified by any other node
on the network, by simply requesting the chunk. If a node’s
reputation is reduced sufficiently, it will be quarantined from
the network, in order to prevent damage or detriment to the
rest of the network.

A client on the network sends all its requests to the network
via its 4 nearest neighbour vaults (which are its managers).
These managers are not selected by the client (as discussed in
section II), and therefore are able to act impartially with regard
to the client. When a client wishes to store data, the client’s
managers contact the 4 vaults closest to the address of the
chunk being stored, and request they act as chunk information
managers for this chunk. The chunk information managers are
responsible for distributing the actual chunks to other vaults
for holding, and recording where these chunks are stored. In
the event of these chunks going offline, the chunk information
managers are responsible for detecting this, and (if necessary)
replicating the chunks to other vaults, and keeping a record
of this. The chunk information managers identify 4 vaults to
hold the actual chunk, acting as chunk holders, and request
that the 4 managers of each of these vaults (the chunk holder
managers)ensure that the vault in question holds the requested
chunk.

This is illustrated in figure 1, where a selection of vaults
(each with its own address, not illustrated in the figure) are
responsible for managing nodes to whom they are closest.
It is worth noting that clients, vaults, chunks, and chunk
information, are all held within the same address space in the
DHT.

V. SELF-MONITORING NETWORK

The MaidSafe network is self-monitoring, in the sense that
there is no central entity responsible for ensuring and enforcing
policies upon other nodes on the network. Each node on the
network has an identifier, which is a cryptographic hash, and
the node forms part of the MaidSafe DHT. Each node is
managed by 4 other nodes, where proximity is derived from
the separation of nodes by their identifier, as per the Kademlia
DHT. [4]

A. Request Authentication

In order to prevent the need for every request to be signed,
client requests are authenticated by their identity - a node
can only connect using an identity it holds the private key

Chunk 79b2...

1: 9a2f90
2:79683d
3:75b65¢
4:702bd7

Ki

A representation of a small area of the network, with clients, vaults,

Fig. 1.
chunks and chunk information within the address space

for (in order to present itself to the network), and at this
point establishes a mutually authenticated connection with its 4
nearest neighbours. After this connection is established, further
communications will be sent using the negotiated connection,
thus validating the origin of the request was the client itself.
The client’s identity is protected, as its IP address is scrubbed
by its managers prior to any request being processed.

B. Node Loss Handling

The MaidSafe network anticipates that in a real-world net-
work, nodes will become available and unavailable continually,
whether as a result of network connectivity issues, or simply
reboots to install system updates. The act of a vault becoming
unavailable will be detected by that vault’s managers, who
will inform the data managers of each chunk previously held
on that node. These data managers may request an additional
copy of the data chunk to be made (using one of the other
copies on the network).

Given a vault will also act as a manager for other nodes
on the network, the act of a node becoming inaccessible will
trigger a process of identifying the next manager for the vault
under the oversight of the now-offline vault, based on the
proximity of that vault to other nodes on the network.

Nodes on the MaidSafe network are ranked by the network,
based on the principle of each node taking care of its own
interests. A node is ranked based on the amount of data it
can store, and the amount of data it loses (through corruption,
deletion, being offline for extended periods of time, or simply
responding slowly to requests).

C. Opportunistic Data Caching

In order to improve the performance of the network, op-
portunistic caching [5] is implemented by nodes. When a
request to retrieve data is received, each node in the chain
will add cacheable (i.e. immutable) data to its own cache,



to speed up future requests for this data. This makes denial
of service attacks (both single-source and distributed) much
more difficult, as requested data will be delivered from the
nearest neighbour to the requesting node, reducing the load
on the network. The caching process also makes popular data
faster to access for every node on the network (as more
popular data will likely be located near to the nodes dealing
with the requests, due to their cache). This means that the
MaidSafe network can act as a content delivery network, with
dynamic caching of requested content throughout the network,
enhancing availability and redundancy, and reducing transport
delays.

D. Network Requirements

A key part of the network, currently undergoing devel-
opment, is the resource management logic of the network.
As briefly covered in section III, a significant aspect of
any decentralised storage network is its resource management
policies. In particular, the need for regular users of the network
to contribute towards its upkeep, through the provision of
storage and bandwidth, is of great importance, in order to
ensure the network remains truly decentralised.

If there is insufficient motivation for users to contribute
storage capacity to the network, and the bandwidth necessary
for such storage to be used, storage provision will ultimately
become centralised around those nodes (and their operators),
who are willing to provide storage to the network. If this group
is insufficiently diverse, it would result in a network which was
almost entirely reliant upon one small group to provide the vast
majority of its resources.

Existing research has explored the behaviour of users on
previous peer-to-peer file sharing networks, indicating it is a
very real concern that the majority of users may choose not
to provide any resources to the network. For example, on the
FastTrack P2P network, 1% of connected users provided 73%
of the bandwidth needed to share files. [6] Likewise, on the
Gnutella network, it was found that around 70% of users shared
no files, and the top 1% of users were providing around 50%
of all responses to requests for data on the network. [7]

VI. IMPLEMENTATION OF SERVICES

The network is currently designed predominantly as a data
storage and retrieval system. Data on the network is stored
within the DHT, where the ‘key’ is typically the hash of the
chunk (for immutable data), and the ‘value’ is the chunk data
itself. To this effect, the main functions of the network are
GET and PUT requests, which retrieve the data held under a
given chunk address, or store data under a given chunk address.
In order to demonstrate how a more complex service can be
constructed upon the network, we shall describe the process of
logging in and authenticating to the network, in a decentralised
manner, without relying on any server to verify credentials, or
have any position of trust. We shall then explore the ability for
this network to be used to create a service capable of storing
and retrieving a user’s files from their client device.

A. Implementation of Decentralised Login

In order to connect to the network, a random, one-use
identity is generated, allowing the client device to connect
to the DHT, and make requests for data. As data on the
network can be retrieved by any user (given the data is itself
protected from unauthorised access via convergent encryption
and obfuscation), as discussed in section VI-B, the client is at
this point able to request existing data chunks, but not create
any new ones.

The client software first requests the authentication creden-
tials from the end-user, through its user interface, and combines
the identity information (username, password and PIN). The
hash of the combined identity information is used as the user’s
identifier - this is the key within the DHT, where the user’s
identity information is located. A key is derived from the
authentication credentials, using the PBKDF2 key derivation
function. This key is used to decrypt the data stored on the
network, at the determined identity address within the DHT.

Decryption of the user’s identity data results in a random
key, which is combined with the authentication information,
in order to yield the address of the user’s data atlas on the
MaidSafe network. The data atlas is a mutable chunk (or set
of chunks) containing the addresses of each data map the user
has access to (a data map is a list of the information needed
to access a stored file via its constituent chunks, including the
hashes of each plaintext chunk, to permit decryption of the
stored data). Having access to this data atlas, the client may
now locate any chunks it requires (such as one containing
its authentication keys for connecting to the network as an
authenticated user), request these, and reverse the convergent
encryption to obtain the original data. At this point, the
client would connect to the network using its regular keys,
thus restoring it to its original location within the network,
and permitting it to authenticate to its 4 nearest neighbours,
allowing modification of existing, or storage of new, data.

B. Implementation of a File Storage Network

1) Data Storage: An obvious use of a decentralised network
such as this is to regard it as a decentralised filesystem, which
the user can access from anywhere they require. By providing
a software-layer implementation of the MaidSafe network, it
would be possible to mount or bind a user’s data to a virtual
location on the device they are using to connect to the network.
We shall consider only the network-level implementation of
such a system, and not how the storage would be mapped
to a location in the user’s operating system (and refer the
interested reader to software implementations of other user-
mode filesystems such as FUSE).

In order to store a file on the network, it is first split into
a minimum of three chunks, each a maximum of 1 Megabyte,
and a minimum of 1 Kilobyte. For files of trivial size which
cannot be split into at least 3 chunks of 1 Kilobyte, the
file is stored, encrypted, directly within the data map, after
undergoing convergent-encryption - we shall therefore consider
the storage of a non-trivial file to demonstrate the process fully.

Each chunk of the file is hashed using the SHA-512 hash
algorithm, and each chunk is then encrypted with an AES-256



key derived from the hash of that chunk, and the two previous
chunks, in a cyclical manner, such that the first chunk will
use the two last chunks for key derivation. This is the process
of convergent encryption [8], [9], whereby the ciphertext of
any given plaintext shall be the same for any user carrying out
the encryption. This provides network-level deduplication [8],
[10], as discussed in section III.

Following convergent encryption, each chunk is obfuscated,
by repeatedly XOR’ing the contents of the chunk with the
unused bytes of the key derivation stage above. This process is
deterministic , based upon the contents of the file, and therefore
does not inhibit file-level deduplication. The resulting chunk
can be uploaded to, and stored on, the DHT (if it does not
already exist). If the chunk already exists on the network,
another user (or the same user) has already uploaded it, and
there is no need to store another copy.

In order to permit the client to later retrieve their files, it is
necessary for the client to have knowledge of, or be able to
retrieve;

e the address of each encoded chunk making up the file

e the position of each encoded chunk within the file

e the original hash of each plaintext chunk, prior to
convergent encryption

Naturally, in order to make this storage system usable
on other locations of the network, it is necessary for this
information to itself be stored on the network (to allow a user
to access their data by logging in from any client). As such, a
data map is created for every file on the network, where these
three pieces of information can be stored. In order to prevent
another user from discovering the data map for a given file,
and accessing it, the data map is protected through the same
convergent encryption process as discussed above for data.
The requisite information for the data map is stored within
the user’s data atlas, which, as described in section VI-A, is
directly decrypted using the user’s authentication information.

2) Data Retrieval: To retrieve a given piece of data, a user
must log into a client (the login process will obtain the user’s
data atlas in the process), and identify which file they wish
to retrieve - the information from the data atlas can be used
to present a listing of files, perhaps in a mounted filesystem,
and allow the user to select their desired file. At this point,
the information obtained from the data atlas is used to request
the retrieval of the data map of the desired file. This data map
provides the addresses of chunks to be retrieved to recover the
file itself. Following receipt of these chunks from the network,
the client reverses the XOR-obfuscation process, using the
original hashes of the chunked plaintext, and removes the
convergent encryption from the chunks, to restore the user’s
original file.

VII. SECURITY ANALYSIS

Within the MaidSafe network, we have identified some
key areas from which security, in the conventional sense of
confidentiality, integrity and availability, is derived, and shall
now review these.

A. Confidentiality

Within the MaidSafe network, data confidentiality is
achieved through three steps, all part of the data storage pro-
cess, as detailed in section VI-B1. Data undergoes convergent
encryption via AES-256, where the keys are derived from the
cryptographic hash of 3 adjacent data chunks. This introduces
the first security consideration.

1) Known Plaintext Attacks: Since the key for a given
plaintext is derived from the hash (which is a function of the
plaintext input), it stands to reason that convergent encryption
is vulnerable to known plaintext attacks. This is not a new
finding, and is documented elsewhere, but is nonetheless
relevant. [11] In this case, we can somewhat limit the extent
of this attack, since despite the use of file chunking, the use
of adjacent plaintext chunks in key derivation ensures that two
coincidentally identical chunks (as part of different files) will
not yield to the same ciphertext (and thus cannot be detected as
being the same). It is necessary for the two previous chunks
in the file to also be identical, in order to obtain the same
ciphertext output. Likewise, during the obfuscation step, when
the encrypted data is repeatedly XOR’d with bytes derived
from the unused keying data, it is clear that the same ciphertext
output will not be obtained for two identical chunks, unless the
two preceding chunks were also identical.

As this attack is a known plaintext attack however, it does
not compromise the confidentiality of data - it is necessary
to know the precise contents of three chunks, in order to
determine that one chunk of a file is common with a target
file. If an application on the network wished to mitigate against
this, it could make use of regular symmetric cryptography
with a non-deterministic key, which would remove global
deduplication but remove the possibility of known plaintext
attack, as discussed in [11].

2) Usage of Asymmetric Cryptography: Within the Maid-
Safe network, usage of asymmetric cryptography is limited to
signatures (for the purposes of authentication), and in securing
the UDP connections between nodes on the network. The con-
fidentiality of data chunks held on the network is not dependent
on the security of any asymmetric cryptography, since regular
AES encryption is used for all decryption operations, from the
data atlas itself, down to individual file chunks.

B. Integrity

In general, chunk integrity on the network is handled in
two ways - firstly through the use of digital signatures,
and secondly through the use of self-validating data. When
immutable data is stored on the network, there is no need
for it to be signed, since it is not possible for any entity on
the network to later update it. Since an immutable chunk is
stored on the network at the location of its hash, any node can
verify that the data is correct. In the event of the data being
incorrect, the managers of the node holding the corrupted data
will reduce the reputation of that node. The fact the data is
invalid is able to be checked, as any user on the network can
validate an immutable chunk by comparing its hash with the
ciphertext contents of the chunk.



In the case of mutable data, each ciphertext chunk is signed
by the owner of the chunk, at the point of it being stored on the
network. In order to update that chunk in future (i.e. to mutate
its contents), this signature will be verified by each node prior
to modifying the stored data. In the event of RSA signatures
being forgeable (for example through quantum computing), the
integrity of this mutable data can no longer be guaranteed,
as an attacker may be able to introduce fraudulent update
requests to the network. The contents of such data will remain
confidential though.

C. Availability

1) Offline Nodes: In order for a chunk to remain available
within the network, it is necessary for at least one vault holding
a valid copy of the chunk to be online, at the time of the
request, with sufficient resources (i.e. bandwidth) to respond
to the request. To mitigate this risk, the managers of chunks
are responsible for ensuring that in the event of only 2 live
copies of the chunk being available, a further 4 copies will be
made (resulting in 6 live copies of the chunks being available).
In the event of a chunk becoming permanently unavailable (i.e.
all of the nodes which held it go offline simultaneously, and
do not reconnect to the network) it will not be possible to
recover that individual chunk. As such, it is important for data
availability that the network is truly decentralised, such that
no failure of an individual or group results in permanent loss
of data on the network, if they are taken offline.

Auvailability concerns on the network are mostly mitigated
through the duplication of chunks - if one node loses (or
refuses to retrieve) a chunk, the same chunk should be acces-
sible in between 3 and 6 locations elsewhere on the network
(depending on how many nodes holding the chunk are online
at the time). The reputation features of the network help to
mitigate this further, by ensuring that intermediary nodes do
not act maliciously on the network, as discussed in section I'V.

2) Network Flooding Attacks: As the network uses a
reputation-based system to attempt to detect malicious be-
haviour by nodes, we identified a possible attack, where an
attacker could obtain network resources for a period of time
(such as via a botnet, or rented cloud computing), and flood
the network with nodes they controlled, in order to use the
birthday paradox to surround some nodes on the network,
gaining the ability to reach and control consensus on their
actions (or spoofed actions).

VIII. CONSIDERED ATTACKS

With a distributed network such as MaidSafe, where nodes
are responsible for the management and supervision of other
nodes, a number of attacks should be considered, whereby
nodes could potentially cause harm to other nodes. The fol-
lowing main types of attack have been identified to pose a risk,
specifically with relation to the vault network.

A. Dishonest Vault Attacks

We firstly propose the dishonest vault attack, whereby a
vault falsely claims to offer more storage capacity to the

network than it is capable of holding. While the MaidSafe
reputation algorithm takes into account only storage capacity
offered by a vault which is actually used, a client is permitted
to store as much data on the network as they themselves claim
to offer the network.

This could lead to situations where a user could create a
vault, offer a large quantity of storage space, then upload a
large quantity of data from an associated client. They could
then remove their vault from the network permanently, deleting
any data stored on it, and their data would remain on the
MaidSafe network, despite not making any contribution of
storage capacity to the network.

This attack could be mitigated by only permitting clients
to store data on the network, to a maximum capacity of the
data they have been verified to be holding. This introduces a
potential conflict, whereby a new user cannot store data on the
network via their client (due to nobody storing data on their
vault), and no other user will store data on their vault (due
to their vault not being trusted). To alleviate this, it would be
possible to permit users to store their own data on their own
vault, in order to establish a reputation on the network.

B. Traffic Amplification Attack

A possible traffic amplification attack has been identified, in
light of the role of vault managers, which are responsible for
notifying data managers if a vault is no longer accessible, and
is believed to be offline. In the event of a vault going offline
(resulting in no introduction of new traffic into the network
by an attacker), the 4 manager nodes of the offline vault are
required to contact the data managers (4 nearest neighbours)
of every data chunk held by the now-offline node.

As such, a node can generate a significant volume of sig-
nalling traffic which will be uniformly distributed throughout
the network (due to the uniform distribution of data throughout
the network). This serves as an effectively unbounded traffic
amplification attack, which could potentially lead to a denial
of service attack, particularly if a number of nodes were taken
offline simultaneously.

Possible mitigations for this include having managers throt-
tle the rate at which they inform data managers about lost
vaults, and rate limiting how frequently a vault’s state will be
reported throughout the network, to prevent repeated joining
and leaving the network from generating large volumes of
traffic being sent throughout the whole network.

C. Read-Only Fallback Attack

Given client requests are processed by the client’s 4 man-
agers, which must achieve a quorum of 3 nodes in agreement
for a request to be valid and accepted by the network, it is
possible that an attack which compromised over 25% of the
nodes on the network could result in portions of the network
becoming effectively read-only, as two manager nodes would
be able to block a legitimate user’s write or delete operation
by declining to approve any requests.

Given nodes joining the network are evenly distributed
throughout the network, an attacker would not require the



ability to join particular areas of the network, rather simply
connect many nodes to the network. The possibility of a
botnet of compromised host devices to launch such an attack
is equally possible.

Possible mitigations for this attack include legitimate nodes
on the network being instructed to reduce the required quorum
level required for a request to be accepted. Whether this attack
is viable, and the point at which it would become viable, is a
topic for further research.

D. Network-wide Denial of Service

Further research into the number of malicious nodes neces-
sary to make the network effectively unavailable is also likely
necessary. Theoretically, if a botnet or other group of malicious
nodes were to make up around 75% of the network, they could
achieve false quorum over invalid requests, and thus request
erase data, or modify mutable data.

It is more likely that an attacker obtaining control of around
75% of the network would pose more significant threats
though, such as simply destroying user trust in the network,
such as the so-called 50% attack often seen in cryptographic
currencies.

E. Compromised Host Attacks

We identified through both simulation, and mathematical
prediction, that it would be possible to carry out a ‘birthday
paradox’ attack on the network, whereby an attacker simply
wishing to cause harm or disruption could flood the network
with nodes it controlled, knowing they only need to surround
a single address with 3 or more malicious nodes, in order to
exert control over that node. While as previously discussed, it
is not possible to deliberately position these nodes around a
desired point in the network, we identified that with around
0.8% of the network’s nodes under the (temporary) control of
an attacker, it was likely the attacker would have at least one
node surrounded on the network, allowing it to exert control
over that node as managers, reaching quorum on false actions.
By way of example, we proposed a proof-of-concept attack,
whereby an attacker would request deletion of any chunks it
could, by acting as the chunk information managers (as defined
in section IV), thereby causing the chunk holders to delete the
chunks in response to a legitimate request, preventing access
to that data for legitimate users. If the attacker were inclined
to act out of financial motivation, they could request a copy
of the chunk prior to its deletion, and request the user pay a
ransom before uploading it to the network again.

We reported this possible attack vector to MaidSafe, who
responded by proposing modifications which would include
not permitting the deletion of immutable data by anyone,
including its owner, and requiring all requests be processed
by two groups of nodes rather than one. Under this proposed
modification, a client would pass its request to its 4 managers,
who verify the request based on the client’s signature, then
pass this request to a deterministically selected group of 4
other nodes, which would also verify the request based on its
signature. By deterministically selecting the second group of
managers, the birthday paradox no longer holds true for the

network, since it would not be possible for the attacker to gain
control over a node by simply surrounding it - the attacker
would require the ability to surround specific nodes in the
network, which is believed to be a difficult task which would
require being able to effectively generate different values
which, when hashed with SHA-512, result in close hashes
around one particular point.

IX. CONCLUSION

The MaidSafe vault network offers a truly decentralised
architecture for data storage throughout a network, with no
single point of failure, and no central authority with control
over a network. All nodes present on the network are managed
by their peers, selected through a deterministic and uniform
process based upon their unique identifier on the network.
Through processes such as opportunistic caching, frequently
accessed data is distributed throughout the network in an
optimal manner, reducing the ability for malicious users to
conduct (distributed) denial of service attacks. A number of
other attacks against the network have been discussed, along
with possible mitigation strategies.

X. ACKNOWLEDGEMENTS

This work was funded by EPSRC Doctoral Training Grant
EP/K503174/1, and MaidSafe.net.

REFERENCES

[1] D. Irvine, J. Irvine, and S. K. Goo, “Sigmoid (x): Secure distributed
network storage,” WWRF, 2011.

[2] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge, “Incen-
tives for sharing in peer-to-peer networks,” in Electronic Commerce.
Springer, 2001, pp. 75-87.

[3] J. Gantz and D. Reinsel, “The digital universe decade - are you ready?”
EMC Corporation, Tech. Rep., 2010.

[4] P. Maymounkov and M. David, “Kademlia: A peer-to-peer information
system based on the xor metric,” in /st International Workshop on Peer-
to-Peer Systems, 2002.

[5] S.T. Kouyoumdjieva, S. Chupisanyarote, O. Helgason, and G. Karlsson,
“Caching strategies in opportunistic networks,” in World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2012 IEEE International
Symposium on a. 1EEE, 2012, pp. 1-6.

[6] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large net-
works,” IEEE/ACM Transactions on Networking (ToN), vol. 12, no. 2,
pp. 219-232, 2004.

[7]1 E. Adar and B. A. Huberman, “Free riding on gnutella,” First Monday,
vol. 5, no. 10, 2000.

[8] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed file
system,” in Distributed Computing Systems, 2002. Proceedings. 22nd
International Conference on. 1EEE, 2002, pp. 617-624.

[9] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked
encryption and secure deduplication,” Advances in Cryptology ...,
pp. 1-29, 2013. [Online]. Available: http://link.springer.com/chapter/
10.1007/978-3-642-38348-9\ _18

[10] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller, “Secure data
deduplication,” Proceedings of the 4th ACM international workshop on
Storage security and survivability - StorageSS "08, p. 1, 2008. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1456469.1456471

[11] Z. Wilcox-O’Hearn, D. Perttula, and B. Warner. Drew perttula
and attacks on convergent encryption. [Online]. Available: https:
//tahoe-lafs.org/hacktahoelafs/drew_perttula.html



